DOI QR코드

DOI QR Code

Fabrication and Device Characteristics of Infrared Photodetector Based on InAs/GaSb Strained-Layer Superlattice

InAs/GaSb 응력초격자를 이용한 적외선검출소자의 제작 및 특성 연구

  • Kim, J.O. (Department of Physics, Kyung Hee University) ;
  • Shin, H.W. (Department of Physics, Kyung Hee University) ;
  • Choe, J.W. (Department of Physics, Kyung Hee University) ;
  • Lee, S.J. (Global Research Laboratory on Quantum Detector Technology, Korea Research institute of Standards and Science) ;
  • Kim, C.S. (Global Research Laboratory on Quantum Detector Technology, Korea Research institute of Standards and Science) ;
  • Noh, S.K. (Global Research Laboratory on Quantum Detector Technology, Korea Research institute of Standards and Science)
  • 김준오 (경희대학교 물리학과) ;
  • 신현욱 (경희대학교 물리학과) ;
  • 최정우 (경희대학교 물리학과) ;
  • 이상준 (한국표준과학연구원 나노소계측정센터 양자검출소자기술 글로벌연구실) ;
  • 김창수 (한국표준과학연구원 나노소계측정센터 양자검출소자기술 글로벌연구실) ;
  • 노삼규 (한국표준과학연구원 나노소계측정센터 양자검출소자기술 글로벌연구실)
  • Published : 2009.03.31

Abstract

The superlattice infrared photodetector (SLIP) with an active layer of 8/8-ML InAs/GaSb type-II strained-layer superlattice (SLS) of 150 periods was grown by MBE technique, and the proto-type discrete device was defined with an aperture of $200-{\mu}m$ diameter. The contrast profile of the transmission electron microscope (TEM) image and the satellite peak in the x-ray diffraction (XRD) rocking curve show that the SLS active layer keeps abrupt interfaces with a uniform thickness and a periodic strain. The wavelength and the bias-voltage dependences of responsivity (R) and detectivity ($D^*$) measured by a blackbody radiation source give that the cutoff wavelength is ${\sim}5{\mu}m$, and the maximum Rand $D^*$ ($\lambda=3.25{\mu}m$) are ${\sim}10^3mA/W$ (-0.6 V/13 K) and ${\sim}10^9cm.Hz^{1/2}/W$ (0 V/13 K), respectively. The activation energy of 275 meV analyzed from the temperature dependent responsivity is in good agreement with the energy difference between two SLS subblevels of conduction and valence bands (HH1-C) involving in the photoresponse process.

150 주기의 InAs/GaSb (8/8-ML) 제2형 응력초격자 (SLS)를 활성층에 탑재한 초격자 적외선검출소자 (SLIP) 구조를 MBE 방법으로 성장하고, 직경 $200{\mu}m$의 개구면을 가지는 SLIP 개별소자를 시험 제작하였다 고분해능 투과전자현미경 (TEM) 이미지의 휘도분포와 X선회절 (XRD) 곡선의 위성피크의 분석 결과는 SLS 활성층은 균일한 층두께와 주기적 응력변형을 유지하는 급격한 계면의 초격자임을 입증하였다. 흑체복사 적외선 광원을 이용하여 측정한 입사파장 및 인가전압에 따른 반응도 (R)와 검출률 ($D^*$)로부터, 차단파장은 ${\sim}5{\mu}m$이고 최대 R과 $D^*$ ($\lambda=3.25{\mu}m$)는 각각 ${\sim}10^3mA/W$ (-0.6 V/13 K)와 ${\sim}10^9cm.Hz^{1/2}/W$ (0 V/13 K)임을 보였다. 반응도의 온도의존성으로부터 분석한 활성화에너지 275 meV는 광반응 과정에 개입되어 있는 가전대 및 전도대 부준위 사이의 에너지 간격 (HH1-C)과 잘 일치하였다.

Keywords

References

  1. S. G. Choi, A. S. Reddy, B.-G. Yu, H. Ryu, and H.-H. Park, J. Korean Vaccum Soc. 17, 130 (2008) https://doi.org/10.5757/JKVS.2008.17.2.130
  2. B. Movaghar, S. Tsao, S. Tsao, S. A. Pour, T. Yamanaka, and M. Razeghi, Phys. Rev. B 78, 115320 (2008) https://doi.org/10.1103/PhysRevB.78.115320
  3. W. Q. Ma, X. J. Yang, M. Chong, T. Yang, L. H. Chcn, J. Shao, X. Lu, W. Lu, C. Y. Song, and H. C. Lin, AppL Phys. Lett. 93, 013502 (2008) https://doi.org/10.1063/1.2956672
  4. S. Krishna, D. Fonnan, S. Annamalai, P. Dowd, P. Varangis, T. Tumolillo, Jr., A. Gray, 1. Zilko, K. Sun, M. Liu, 1. campbell, and D. Carothers, AppL Phys. Lett. 86, 193501 (2005) https://doi.org/10.1063/1.1924887
  5. S. Tsao, II. Lim, W. Zhang, and M. Razeghi, Appl. Phys. Lett. 90, 201109 (2007) https://doi.org/10.1063/1.2740111
  6. E.-T. Kim, Z. Chen, and A. Madhukar, J. Korean Phys. Soc. 49, 837 (2006)
  7. J. O. Kim, S. J. Lee, S. K. Noh, J. W. Choe, and T. W. Kang, J. Korean Phys. Soc. 53, 2100 (2008)
  8. P. S. Dutta and H. L. Bhat, J. Appl. Phys. 81, 5821 (1997) https://doi.org/10.1063/1.365356
  9. B.-M. Nguyen, D. Hoffman, P.-Y. De1aunay, and M. Razeghi, Appl. Phys. Lett. 91, 163511 (2007) https://doi.org/10.1063/1.2800808
  10. E. Plis, J. B. Rodriguez, H. S. Kim, G. Bishop, Y. Shanha, R. Dawson, S. J. Lee, C. E. Jones, V. Gopal, and S. Krishna, Appl. Phys. Lett. 91, 133512 (2007) https://doi.org/10.1063/1.2790078
  11. S. Mou, A. Petschke, Q. Liu, S. L. Chuang, J. V. Li, and C. J. Hill, Appl. Phys. Lett. 92, 153505 (2008) https://doi.org/10.1063/1.2909538
  12. H. S. Kim, E. P1is, J. B. Rodriguez, G. D. Bishop, Y. D. Shanna, L. R. Dawson, S. Krishna, J. Bundas, R. Cook, D. Burrows, R. Dennis, K. Patnaude, A. Reisinger, and M. Sundaram, Appl. Phys. Lett. 92, 183502 (2008) https://doi.org/10.1063/1.2920764
  13. S. Maison and G. W. Wicks, Appl. Phys. Lett. 89, 151109 (2006) https://doi.org/10.1063/1.2360235
  14. A. Khoshakh1agh, J. B. Rodriguez, E. Plis, G. D. 114 Bishop, Y. D. Shanna, H. S. Kim, L. R. Dawson, and S. Krishna, Appl. Phys. Lett. 91, 263504 (2007) https://doi.org/10.1063/1.2824819
  15. J. Steinshnider, M. Weimer, R. Kaspi, and G. W. Turner, Phys. Rev. Lett. 85, 2953 (2000) https://doi.org/10.1103/PhysRevLett.85.2953
  16. J. O. Kim, H. W. Shin, J. W. Choe, S. J. Lee, and S. K. Noh, J. Korean Vacuum Soc., Submitted (2009)
  17. M. Herrera, M. Chi, M. Bonds, N. D. Browing, J. N. Woolman, R. E. Kvaas, S. F. Harris, D. R. Rhiger, and c.. J. Hill, Appl. Phys. Lett. 93, 093106 (2008) https://doi.org/10.1063/1.2977589
  18. A. P. Ongstad, R. Kaspi, C. E. Moeller, M. L. Tilton, D. M. Gianardi, J. R. Chavez, and G. C. Dente, J. Appl. Phys. 89, 2185 (2001) https://doi.org/10.1063/1.1337918
  19. R. Kaspi, C. Moeller, A. Ongstad, M. L. Tilton, D. Gianardi, G. Dente, and P. Gopa1adasu, Appl. Phys. Lett. 76, 409 (2000) https://doi.org/10.1063/1.125770
  20. G. C. Dente and M. L. Tilton, J. Appl. Phys. 86, 1420 (1999) https://doi.org/10.1063/1.370905
  21. S. J. Lee, S. K. Noh, L. R. Dawson, and S. Krishna, J. Korean Phys. Soc. 54, 280 (2009) https://doi.org/10.3938/jkps.54.280

Cited by

  1. Fabrication of [320×256]-FPA Infrared Thermographic Module Based on [InAs/GaSb] Strained-Layer Superlattice vol.20, pp.1, 2011, https://doi.org/10.5757/JKVS.2011.20.1.022