DOI QR코드

DOI QR Code

Comparison of Plotting Position Formulas for Gumbel Distribution

Gumbel 분포에 대한 도시위치공식의 비교

  • Kim, Soo-Young (School of Civil and Environmental Engineering, Yonsei University) ;
  • Heo, Jun-Haeng (School of Civil and Environmental Engineering, Yonsei University) ;
  • Shin, Hong-Joon (School of Civil and Environmental Engineering, Yonsei University) ;
  • Kho, Youn-Woo (School of Civil and Environmental Engineering, Yonsei University)
  • 김수영 (연세대학교 사회환경시스템공학부) ;
  • 허준행 (연세대학교 사회환경시스템공학부) ;
  • 신홍준 (연세대학교 사회환경시스템공학부) ;
  • 고연우 (연세대학교 사회환경시스템공학부)
  • Published : 2009.05.31

Abstract

Probability plotting positions are used for the graphical display of annual maximum rainfall or flood series and the estimation of exceedance probability of those values. In addition, plotting positions allow a visual examination of the fitness of probability distribution provided by frequency analysis for a given data. Therefore, the graphical approach using plotting position has been applied to many fields of hydrology and water resources planning. In this study, the plotting position formula for the Gumbel distribution is derived by using the order statistics and the probability weight moment of the Gumbel distribution for various sample sizes. And then, the parameters of plotting position formula for the Gumbel distribution are estimated by using genetic algorithm. The appropriate plotting position formulas for the Gumbel distribution are examined by the comparison of root mean square errors and biases between theoretical reduced Gumbel variates and those calculated from derived and existing plotting position formulas. As the results, Gringorten's plotting position formula has the smaller root mean square errors and biases than any other formulas.

확률도시위치는 주로 도시적 해석을 통한 연최대홍수량 또는 연최대강우량의 초과확률의 추정치 산정에 사용되며 빈도해석을 통해 선정된 적정 확률분포형과 표본자료의 적합도를 도시적으로 파악할 수 있도록 해주기 때문에 오래 전부터 수문 및 수자원 분야에 널리 이용되어 왔다. 본 연구에서는 Gumbel 분포에 적합한 도시위치공식을 추정하고자 Gumbel 분포의 순서통계량과 확률가중모멘트를 이용하여 다양한 표본크기에 대한 도시위치공식의 기본식을 유도하였고, 최적화 기법 중 하나인 유전자 알고리즘을 이용하여 도시위치공식의 매개변수를 추정하였다. 또한 Gumbel 분포에 적합한 도시위치공식을 검토하고자 Gumbel 분포의 이론적인 축소변량과 본 연구에서 추정한 도시위치공식과 기존의 도시위치공식에 의해 계산된 축소변량 간의 평균제곱근오차와 편의를 비교하였다. 그 결과, Gringorten이 제안한 도시위치공식을 적용한 경우의 축소변량간 평균제곱근오차와 순서별 편의가 가장 작은 것으로 분석되었다.

Keywords

References

  1. Adamowski, K. (1981). 'Plotting position formula for flood frequency.' Water Resource Bulletin, Vol. 17, No. 2, pp. 197-201 https://doi.org/10.1111/j.1752-1688.1981.tb03922.x
  2. Arnell, N. W., Beran, M., and Hosking, J. R. M. (1986). 'Unbiased plotting positions for the general extreme value distribution.' Journal of Hydrology, Vol. 86, pp. 59-69 https://doi.org/10.1016/0022-1694(86)90006-5
  3. Beyer, H.-G. and Deb, K. (2001). 'On self-adaptive features in real-parameter evolutionary algorithms.' IEEE Transactions on Evolutionary Computation, Vol. 5, No. 3, pp. 250-270 https://doi.org/10.1109/4235.930314
  4. Blom, G. (1958). Statistical Estimates and Transformed Beta Variables. Wiley, New York, N.Y.
  5. Cunnane, C. (1978). 'Unbiased plotting positions-A review.' Journal of Hydrology, Vol. 37, No. 3/4, pp. 205-222 https://doi.org/10.1016/0022-1694(78)90017-3
  6. De, M. (2000). 'A new unbiased plotting position formula for Gumbel distribution.' Stochastic Environmental Research and Risk Assessment, Vol. 14, pp. 1-7 https://doi.org/10.1007/s004770050001
  7. Deb, K. and Beyer, H.-G. (2001). 'Self-adaptive genetic algorithms with simulated binary crossover.' Evolutionary Computation Journal, Vol. 9, No. 2, pp. 197-221 https://doi.org/10.1162/106365601750190406
  8. Goel, N. K. and De, M. (1993). 'Development of unbiased plotting position formula for General Extreme Value distribution.' Stochastic Environmental Research and Risk Assessment, Vol. 7, pp. 1-13 https://doi.org/10.1007/BF01581563
  9. Goldberg, D. E. (1989). Genetic algorithms in search, optimization & machine learning. Addison Wesley, Massachusetts
  10. Greenwood, J. A., Landwehr, J. M., Matalas, N. C., and Wallis, J. R. (1979). 'Probability weighted moments : definition and relation to parameters of several distributions expressible in inverse Form.' Water Resources Research, Vol. 15, No. 5, pp. 1049-1054 https://doi.org/10.1029/WR015i005p01049
  11. Gringorten, I. I. (1963). 'A plotting rule for extreme probability paper.' Journal of Geophysical Research, Vol. 68, No. 3, pp. 813-814 https://doi.org/10.1029/JZ068i003p00813
  12. Gumbel, E. J. (1958). Statistics of Extremes. Columbia University Press, New York, N.Y., pp.28-34
  13. Guo, S. L. (1990a). 'A discussion on unbiased plotting positions for the general extreme value distribution.' Journal of Hydrology, Vol. 121, pp.33-44 https://doi.org/10.1016/0022-1694(90)90223-K
  14. Guo, S. L. (1990b). 'Unbiased plotting position formulae for historical floods.' Journal of Hydrology, Vol. 121, pp. 45-61 https://doi.org/10.1016/0022-1694(90)90224-L
  15. In-na, N. and Nguyen, V-T-V. (1989). 'An unbiased plotting position formula for the generalized extreme value distribution.' Journal of Hydrology, Vol. 106, pp. 193-209 https://doi.org/10.1016/0022-1694(89)90072-3
  16. Haktanir, T. and Bozduman, A. (1995). 'A study on sensitivity of the probability-weighted moments method on the choice of the plotting position formula.' Journal of Hydrology, Vol. 168, pp. 265-281 https://doi.org/10.1016/0022-1694(94)02642-O
  17. Hazen A. (1914). 'Storage to be provided in impounding reservoirs for municipal water supply.' Transactions American Society of Civil Engineers, Vol. 1308, No. 77, pp. 1547-1550
  18. Holland, J. H. (1975). Adaptation in Natural and Artificial Systems. University of Michigan Press
  19. Natural Environment Research Council (1975). Flood Studies Report. Vol. 1, London
  20. Nguyen, V-T-V., In-na, N., and Bobee, B. (1989). 'New plotting-position formula for Pearson type III distribution.' Journal of Hydraulic Engineering, Vol. 115, No. 6, pp. 709-730 https://doi.org/10.1061/(ASCE)0733-9429(1989)115:6(709)
  21. Nguyen, V-T-V. and In-na, N. (1992). 'Plotting formula for Pearson type III distribution considering historical information.' Environmental Monitoring and Assessment, Vol. 23, pp. 137-152 https://doi.org/10.1007/BF00406958
  22. Weibull, W. (1939). 'A statistical theory of strength of materials.' Ing. Vetenskaps Akad. Handl, No. 151, Generalstabens Litografiska Anstals Forlag, Stockholm
  23. Xuewu, J., Jing, D., Shen, H. W., and Salas, J. D. (1984). 'Probability plots for Pearson type III distribution.' Journal of Hydrology, Vol. 74, pp. 1-29 https://doi.org/10.1016/0022-1694(84)90137-9

Cited by

  1. Derivation of Plotting Position Formulas Considering the Coefficients of Skewness for the GEV Distribution vol.44, pp.2, 2011, https://doi.org/10.3741/JKWRA.2011.44.2.085
  2. Development of plotting position for the general extreme value distribution vol.475, 2012, https://doi.org/10.1016/j.jhydrol.2012.09.055
  3. Prediction of Local Scour Around Bridge Piers Using GEP Model vol.34, pp.6, 2014, https://doi.org/10.12652/Ksce.2014.34.6.1779