References
- Ai, Y. C. and D. B. Wilson. 2002. Mutation and expression of N233C-D506C of cellulase Cel6B from Thermobifida fusca in Escherichia coli. Enzyme Microb. Tech. 30: 804-808 https://doi.org/10.1016/S0141-0229(02)00061-3
- Banas, J. A. and M. M. Vickerman. 2003. Glucan-binding proteins of the oral streptococci. Crit. Rev. Oral Biol. Med. 14: 89-99 https://doi.org/10.1177/154411130301400203
- Chakravarty, S. and R. Varadarajan. 2000. Elucidation of determinants of protein stability through genome sequence analysis. FEBS Lett. 470: 65-69 https://doi.org/10.1016/S0014-5793(00)01267-9
- Chen, L., X. S. Zhou, W. M. Fan, and Y. X. Zhang. 2008. Expression, purification and characterization of a recombinant Lipomyces starkeyi dextranase in Pichia pastoris. Protein Expr. Purif. 58: 87-93 https://doi.org/10.1016/j.pep.2007.10.021
- Chen, Y., C. T. Mant, S. W. Farmer, R. E. Hancock, M. L. Vasil, and R. S. Hodges. 2005. Rational design of alpha-helical antimicrobial peptides with enhanced activities and specificity/therapeutic index. J. Biol. Chem. 280: 12316-12329 https://doi.org/10.1074/jbc.M413406200
- Chica, R. A., N. Doucet, and J. N. Pelletier. 2005. Semi-rational approaches to engineering enzyme activity: Combining the benefits of directed evolution and rational design. Curr. Opin. Biotechnol. 16: 378-384 https://doi.org/10.1016/j.copbio.2005.06.004
- Chirgadze, D. Y., J. Hepple, R. A. Byrd, R. Sowdhamini, T. L. Blundell, and E. Gherardi. 1998. Insights into the structure of hepatocyte growth factor/scatter factor (HGF/SF) and implications for receptor activation. FEBS Lett. 430: 126-129 https://doi.org/10.1016/S0014-5793(98)00558-4
- Dai, M. H., E. D. Wang, Y. Xie, W. H. Jiang, and G. P. Zhao. 1999. Site-directed mutagenesis of the active center of penicillin acylase from E. coli ATCC 11105. Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao (Shanghai) 31: 558-562
- Donate, L. E., E. Gherardi, N. Srinivasan, R. Sowdhamini, S. Aparicio, and T. L. Blundell. 1994. Molecular evolution and domain structure of plasminogen-related growth factors (HGF/SF and HGF1/MSP). Protein Sci. 3: 2378-2394 https://doi.org/10.1002/pro.5560031222
- Egglestona, G. and A. Monge. 2005. Optimization of sugarcane factory application of commercial dextranases. Process Biochem. 40: 1881-1894 https://doi.org/10.1016/j.procbio.2004.06.025
- Gabor, E. M. and D. B. Janssen. 2004. Increasing the synthetic performance of penicillin acylase PAS2 by structure-inspired semi-random mutagenesis. Protein Eng. Des. Sel. 17: 571-579 https://doi.org/10.1093/protein/gzh070
- Guex, N. and M. C. Peitsch. 1997. SWISS-MODEL and the Swiss-PdbViewer: An environment for comparative protein modeling. Electrophoresis 18: 2714-2723 https://doi.org/10.1002/elps.1150181505
- Hoster, F., R. Daniel, and G. Gottschalk. 2001. Isolation of a new Thermoanaerobacterium thermosaccharolyticum strain (FH1) producing a thermostable dextranase. J. Gen. Appl. Microbiol. 47: 187-192 https://doi.org/10.2323/jgam.47.187
- Jeong, M. Y., S. Kim, C. W. Yun, Y. J. Choi, and S. G. Cho. 2007. Engineering a de novo internal disulfide bridge to improve the thermal stability of xylanase from Bacillus stearothermophilus No. 236. J. Biotechnol. 127: 300-309 https://doi.org/10.1016/j.jbiotec.2006.07.005
- Jimenez, E. R. 2005. The dextranase throughout the sugarproduction industry. Biotechnol. Appl. 22: 20-27
- Kang, H. K., S. H. Kim, J. Y. Park, X. J. Jin, D. K. Oh, S. S. Kang, and D. Kim. 2005. Cloning and characterization of a dextranase gene from Lipomyces starkeyi and its expression in Saccharomyces cerevisiae. Yeast 22: 1239-1248 https://doi.org/10.1002/yea.1311
- Khalikova, E., P. Susi, and T. Korpela. 2005. Microbial dextranhydrolyzing enzymes: Fundamentals and applications. Microbiol. Mol. Biol. Rev. 69: 306-325 https://doi.org/10.1128/MMBR.69.2.306-325.2005
- Kim, D. and D. F. Day. 1994. A new process for the production of clinical dextran by mixed-culture fermentation of Lipomyces starkeyi and Leuconostoc mesenteroides. Enzyme Microb. Tech. 16: 844-848 https://doi.org/10.1016/0141-0229(94)90058-2
- Ko, J. H., W. H. Jang, E. K. Kim, H. B. Lee, K. D. Park, J. H. Chung, and O. J. Yoo. 1996. Enhancement of thermostability and catalytic efficiency of AprP, an alkaline protease from Pseudomonas sp., by the introduction of a disulfide bond. Biochem. Biophys. Res. Commun. 221: 631-635 https://doi.org/10.1006/bbrc.1996.0647
- Larsson, A. M., R. Andersson, J. Stahlberg, L. Kenne, and T. A. Jones. 2003. Dextranase from Penicillium minioluteum: Reaction course, crystal structure, and product complex. Structure 11: 1111-1121 https://doi.org/10.1016/S0969-2126(03)00147-3
- Lehmann, M. and M. Wyss. 2001. Engineering proteins for thermostability: The use of sequence alignments versus rational design and directed evolution. Curr. Opin. Biotechnol. 12: 371-375 https://doi.org/10.1016/S0958-1669(00)00229-9
- Li, W. F., X. X. Zhou, and P. Lu. 2005. Structural features of thermozymes. Biotechnol. Adv. 23: 271-281 https://doi.org/10.1016/j.biotechadv.2005.01.002
- Marotta, M., A. Martino, A. D. Rosa, E. Farina, and M. Carten. 2002. Degradation of dental plaque glucans and prevention of glucan formation using commercial enzymes. Process Biochem. 38: 101-108 https://doi.org/10.1016/S0032-9592(02)00058-4
- Mehvar, R. 2000. Dextrans for targeted and sustained delivery of therapeutic and imaging agents. J. Control. Release 69: 1-25 https://doi.org/10.1016/S0168-3659(00)00302-3
- Mildvan, A. S., D. J. Weber, and A. Kuliopulos. 1992. Quantitative interpretations of double mutations of enzymes. Arch. Biochem. Biophys. 294: 327-340 https://doi.org/10.1016/0003-9861(92)90692-P
- Mildvan, A. S. 2004. Inverse thinking about double mutants of enzymes. Biochemistry 43: 14517-14520 https://doi.org/10.1021/bi048052e
- Miller, G. L. 1959. Use of dinitrosalicylic acid reagent for the determination of reducing sugars. J. Anal. Chem. 31: 426-428 https://doi.org/10.1021/ac60147a030
- Robyt, J. F., R. J. Ackerman, and C. G. Chittenden. 1971. Reaction of protein disulfide groups with Ellman's reagent: A case study of the number of sulfhydryl and disulfide groups in Aspergillus oryzae -amylase, papain, and lysozyme. Arch. Biochem. Biophys. 147: 262-269 https://doi.org/10.1016/0003-9861(71)90334-1
- Rodriguez, E., Z. A. Wood, P. A. Karplus, and X. G. Lei. 2000. Site-directed mutagenesis improves catalytic efficiency and thermostability of Escherichia coli pH 2.5 acid phosphatase/phytase expressed in Pichia pastoris. Arch. Biochem. Biophys. 382: 105-112 https://doi.org/10.1006/abbi.2000.2021
- Rosato, V., N. Pucello, and G. Giuliano. 2002. Evidence for cysteine clustering in thermophilic proteomes. Trends Genet. 18: 278-281 https://doi.org/10.1016/S0168-9525(02)02691-4
-
Shimizu-Ibuka, A., H. Matsuzawa, and H. Sakai. 2006. Effect of disulfide-bond introduction on the activity and stability of the extended-spectrum class A
$\beta$ -lactamase Toho-1. Biochim. Biophys. Acta 1764: 1349-1355 https://doi.org/10.1016/j.bbapap.2006.06.004 - Srinivasan, N., R. Sowdhamini, C. Ramakrishnan, and P. Balaram. 1990. Conformations of disulfide bridges in proteins. Int. J. Pept. Protein Res. 36: 147-155 https://doi.org/10.1111/j.1399-3011.1990.tb00958.x
- Sobolev, V., A. Sorokine, J. Prilusky, E. E. Abola, and M. Edelman. 1999. Automated analysis of interatomic contacts in proteins. Bioinformatics 15: 327-332 https://doi.org/10.1093/bioinformatics/15.4.327
- Sowdhamini, R., N. Srinivasan, B. Shoichet, D. V. Santi, C. Ramakrishnan, and P. Balaram. 1989. Stereochemical modeling of disulfide bridges. Criteria for introduction into proteins by site-directed mutagenesis. Protein Eng. 3: 95-103 https://doi.org/10.1093/protein/3.2.95
- Thoren, L. 1981. The dextrans - clinical data. Devel. Biol. Stand. 48: 157-167
- Tindbaek, N., A. Svendsen, P. R. Oestergaard, and H. Draborg. 2004. Engineering a substrate-specific cold-adapted subtilisin. Protein Eng. Des. Sel. 17: 149-156 https://doi.org/10.1093/protein/gzh019
- Turner, N. J. 2003. Directed evolution of enzymes for applied biocatalysis. Trends Biotechnol. 21: 474-478 https://doi.org/10.1016/j.tibtech.2003.09.001
- Williams, G. J., A. S. Nelson, and A. Berry. 2004. Directed evolution of enzymes for biocatalysis and the life sciences. Cell Mol. Life Sci. 61: 3034-3046 https://doi.org/10.1007/s00018-004-4234-5
- Wynter, C. V. A., M. Chang, and J. De Jersey. 1997. Isolation and characterization of a thermostable dextranase. Enzyme Microb. Technol. 20: 242-247 https://doi.org/10.1016/S0141-0229(96)00118-4
- Zhou, H., M. J. Mazzulla, J. D. Kaufman, S. J. Stahl, P. T. Wingfield, J. S. Rubin, D. P. Bottaro, and R. A. Byrd. 1998. The solution structure of the N-terminal domain of hepatocyte growth factor reveals a potential heparin-binding site. Structure 6: 109-116 https://doi.org/10.1016/S0969-2126(98)00012-4
Cited by
- lmo0038Is Involved in Acid and Heat Stress Responses and Specific forListeria monocytogenesLineages I and II, andListeria ivanovii vol.6, pp.3, 2009, https://doi.org/10.1089/fpd.2008.0207
- Serovar 4b Complex Predominates AmongListeria monocytogenesIsolates from Imported Aquatic Products in China vol.7, pp.1, 2009, https://doi.org/10.1089/fpd.2009.0353
- Deciphering the Biodiversity of Listeria monocytogenes Lineage III Strains by Polyphasic Approaches vol.49, pp.5, 2009, https://doi.org/10.1007/s12275-011-1006-4
- Introduction of a disulfide bond leads to stabilization and crystallization of a ricin immunogen vol.79, pp.4, 2011, https://doi.org/10.1002/prot.22933
- Engineering and Kinetic Stabilization of the Therapeutic Enzyme Anabeana variabilis Phenylalanine Ammonia Lyase vol.171, pp.7, 2013, https://doi.org/10.1007/s12010-013-0450-5
- Computationally designed libraries for rapid enzyme stabilization vol.27, pp.2, 2009, https://doi.org/10.1093/protein/gzt061
- Identification of Lactobacillus proteins with different recognition patterns between immune rabbit sera and nonimmune mice or human sera vol.16, pp.None, 2009, https://doi.org/10.1186/s12866-016-0631-9
- Lactobacillus kefiri shows inter-strain variations in the amino acid sequence of the S-layer proteins vol.110, pp.4, 2017, https://doi.org/10.1007/s10482-016-0820-4
- Adhesion ofLactobacilliand their anti-infectivity potential vol.57, pp.10, 2017, https://doi.org/10.1080/10408398.2014.918533
- Lipomyces starkeyi: an emerging cell factory for production of lipids, oleochemicals and biotechnology applications vol.34, pp.10, 2018, https://doi.org/10.1007/s11274-018-2532-6