DOI QR코드

DOI QR Code

Rational Introduction of Disulfide Bond to Enhance Optimal Temperature of Lipomyces starkeyi $\alpha$-Dextranase Expressed in Pichia pastoris

  • Chen, Lin (State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology) ;
  • Yu, Chao (State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology) ;
  • Zhou, Xiangshan (State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology) ;
  • Zhang, Yuanxing (State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology)
  • Published : 2009.12.31

Abstract

$\alpha$-Dextranase, which can hydrolyze dextran, is largely used in the sugar industry. However, a thermostable $\alpha$-dextranase is needed to alleviate the viscosity of syrups and clean blocked machines. Thus, to improve the optimal temperature of Lipomyces starkeyi $\alpha$-dextranase expressed by Pichia pastoris, the rational introduction of a de novo designed disulfide bond was investigated. Based on the known structure of Penicillium minioluteum dextranase, L. starkeyi $\alpha$-dextranase was constructed using homology modeling. Four amino acids residues were then selected for site-directed mutagenesis to cysteine. When compared with the wild-type dextranase, the mutant DexM2 (D279C/S289C) showed a more than $13^{\circ}C$ improvement on its optimal temperature. DexM2 and DexM12 (T245C/N248C, D279C/S289C) also showed a better thermal stability than the wild-type dextranase. After the introduction of two disulfide bonds, the specific activity of DexM12 was evaluated and found to be two times higher than that of the wild-type. Moreover, DexM12 also showed the highest $V_{max}$.

Keywords

References

  1. Ai, Y. C. and D. B. Wilson. 2002. Mutation and expression of N233C-D506C of cellulase Cel6B from Thermobifida fusca in Escherichia coli. Enzyme Microb. Tech. 30: 804-808 https://doi.org/10.1016/S0141-0229(02)00061-3
  2. Banas, J. A. and M. M. Vickerman. 2003. Glucan-binding proteins of the oral streptococci. Crit. Rev. Oral Biol. Med. 14: 89-99 https://doi.org/10.1177/154411130301400203
  3. Chakravarty, S. and R. Varadarajan. 2000. Elucidation of determinants of protein stability through genome sequence analysis. FEBS Lett. 470: 65-69 https://doi.org/10.1016/S0014-5793(00)01267-9
  4. Chen, L., X. S. Zhou, W. M. Fan, and Y. X. Zhang. 2008. Expression, purification and characterization of a recombinant Lipomyces starkeyi dextranase in Pichia pastoris. Protein Expr. Purif. 58: 87-93 https://doi.org/10.1016/j.pep.2007.10.021
  5. Chen, Y., C. T. Mant, S. W. Farmer, R. E. Hancock, M. L. Vasil, and R. S. Hodges. 2005. Rational design of alpha-helical antimicrobial peptides with enhanced activities and specificity/therapeutic index. J. Biol. Chem. 280: 12316-12329 https://doi.org/10.1074/jbc.M413406200
  6. Chica, R. A., N. Doucet, and J. N. Pelletier. 2005. Semi-rational approaches to engineering enzyme activity: Combining the benefits of directed evolution and rational design. Curr. Opin. Biotechnol. 16: 378-384 https://doi.org/10.1016/j.copbio.2005.06.004
  7. Chirgadze, D. Y., J. Hepple, R. A. Byrd, R. Sowdhamini, T. L. Blundell, and E. Gherardi. 1998. Insights into the structure of hepatocyte growth factor/scatter factor (HGF/SF) and implications for receptor activation. FEBS Lett. 430: 126-129 https://doi.org/10.1016/S0014-5793(98)00558-4
  8. Dai, M. H., E. D. Wang, Y. Xie, W. H. Jiang, and G. P. Zhao. 1999. Site-directed mutagenesis of the active center of penicillin acylase from E. coli ATCC 11105. Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao (Shanghai) 31: 558-562
  9. Donate, L. E., E. Gherardi, N. Srinivasan, R. Sowdhamini, S. Aparicio, and T. L. Blundell. 1994. Molecular evolution and domain structure of plasminogen-related growth factors (HGF/SF and HGF1/MSP). Protein Sci. 3: 2378-2394 https://doi.org/10.1002/pro.5560031222
  10. Egglestona, G. and A. Monge. 2005. Optimization of sugarcane factory application of commercial dextranases. Process Biochem. 40: 1881-1894 https://doi.org/10.1016/j.procbio.2004.06.025
  11. Gabor, E. M. and D. B. Janssen. 2004. Increasing the synthetic performance of penicillin acylase PAS2 by structure-inspired semi-random mutagenesis. Protein Eng. Des. Sel. 17: 571-579 https://doi.org/10.1093/protein/gzh070
  12. Guex, N. and M. C. Peitsch. 1997. SWISS-MODEL and the Swiss-PdbViewer: An environment for comparative protein modeling. Electrophoresis 18: 2714-2723 https://doi.org/10.1002/elps.1150181505
  13. Hoster, F., R. Daniel, and G. Gottschalk. 2001. Isolation of a new Thermoanaerobacterium thermosaccharolyticum strain (FH1) producing a thermostable dextranase. J. Gen. Appl. Microbiol. 47: 187-192 https://doi.org/10.2323/jgam.47.187
  14. Jeong, M. Y., S. Kim, C. W. Yun, Y. J. Choi, and S. G. Cho. 2007. Engineering a de novo internal disulfide bridge to improve the thermal stability of xylanase from Bacillus stearothermophilus No. 236. J. Biotechnol. 127: 300-309 https://doi.org/10.1016/j.jbiotec.2006.07.005
  15. Jimenez, E. R. 2005. The dextranase throughout the sugarproduction industry. Biotechnol. Appl. 22: 20-27
  16. Kang, H. K., S. H. Kim, J. Y. Park, X. J. Jin, D. K. Oh, S. S. Kang, and D. Kim. 2005. Cloning and characterization of a dextranase gene from Lipomyces starkeyi and its expression in Saccharomyces cerevisiae. Yeast 22: 1239-1248 https://doi.org/10.1002/yea.1311
  17. Khalikova, E., P. Susi, and T. Korpela. 2005. Microbial dextranhydrolyzing enzymes: Fundamentals and applications. Microbiol. Mol. Biol. Rev. 69: 306-325 https://doi.org/10.1128/MMBR.69.2.306-325.2005
  18. Kim, D. and D. F. Day. 1994. A new process for the production of clinical dextran by mixed-culture fermentation of Lipomyces starkeyi and Leuconostoc mesenteroides. Enzyme Microb. Tech. 16: 844-848 https://doi.org/10.1016/0141-0229(94)90058-2
  19. Ko, J. H., W. H. Jang, E. K. Kim, H. B. Lee, K. D. Park, J. H. Chung, and O. J. Yoo. 1996. Enhancement of thermostability and catalytic efficiency of AprP, an alkaline protease from Pseudomonas sp., by the introduction of a disulfide bond. Biochem. Biophys. Res. Commun. 221: 631-635 https://doi.org/10.1006/bbrc.1996.0647
  20. Larsson, A. M., R. Andersson, J. Stahlberg, L. Kenne, and T. A. Jones. 2003. Dextranase from Penicillium minioluteum: Reaction course, crystal structure, and product complex. Structure 11: 1111-1121 https://doi.org/10.1016/S0969-2126(03)00147-3
  21. Lehmann, M. and M. Wyss. 2001. Engineering proteins for thermostability: The use of sequence alignments versus rational design and directed evolution. Curr. Opin. Biotechnol. 12: 371-375 https://doi.org/10.1016/S0958-1669(00)00229-9
  22. Li, W. F., X. X. Zhou, and P. Lu. 2005. Structural features of thermozymes. Biotechnol. Adv. 23: 271-281 https://doi.org/10.1016/j.biotechadv.2005.01.002
  23. Marotta, M., A. Martino, A. D. Rosa, E. Farina, and M. Carten. 2002. Degradation of dental plaque glucans and prevention of glucan formation using commercial enzymes. Process Biochem. 38: 101-108 https://doi.org/10.1016/S0032-9592(02)00058-4
  24. Mehvar, R. 2000. Dextrans for targeted and sustained delivery of therapeutic and imaging agents. J. Control. Release 69: 1-25 https://doi.org/10.1016/S0168-3659(00)00302-3
  25. Mildvan, A. S., D. J. Weber, and A. Kuliopulos. 1992. Quantitative interpretations of double mutations of enzymes. Arch. Biochem. Biophys. 294: 327-340 https://doi.org/10.1016/0003-9861(92)90692-P
  26. Mildvan, A. S. 2004. Inverse thinking about double mutants of enzymes. Biochemistry 43: 14517-14520 https://doi.org/10.1021/bi048052e
  27. Miller, G. L. 1959. Use of dinitrosalicylic acid reagent for the determination of reducing sugars. J. Anal. Chem. 31: 426-428 https://doi.org/10.1021/ac60147a030
  28. Robyt, J. F., R. J. Ackerman, and C. G. Chittenden. 1971. Reaction of protein disulfide groups with Ellman's reagent: A case study of the number of sulfhydryl and disulfide groups in Aspergillus oryzae -amylase, papain, and lysozyme. Arch. Biochem. Biophys. 147: 262-269 https://doi.org/10.1016/0003-9861(71)90334-1
  29. Rodriguez, E., Z. A. Wood, P. A. Karplus, and X. G. Lei. 2000. Site-directed mutagenesis improves catalytic efficiency and thermostability of Escherichia coli pH 2.5 acid phosphatase/phytase expressed in Pichia pastoris. Arch. Biochem. Biophys. 382: 105-112 https://doi.org/10.1006/abbi.2000.2021
  30. Rosato, V., N. Pucello, and G. Giuliano. 2002. Evidence for cysteine clustering in thermophilic proteomes. Trends Genet. 18: 278-281 https://doi.org/10.1016/S0168-9525(02)02691-4
  31. Shimizu-Ibuka, A., H. Matsuzawa, and H. Sakai. 2006. Effect of disulfide-bond introduction on the activity and stability of the extended-spectrum class A $\beta$-lactamase Toho-1. Biochim. Biophys. Acta 1764: 1349-1355 https://doi.org/10.1016/j.bbapap.2006.06.004
  32. Srinivasan, N., R. Sowdhamini, C. Ramakrishnan, and P. Balaram. 1990. Conformations of disulfide bridges in proteins. Int. J. Pept. Protein Res. 36: 147-155 https://doi.org/10.1111/j.1399-3011.1990.tb00958.x
  33. Sobolev, V., A. Sorokine, J. Prilusky, E. E. Abola, and M. Edelman. 1999. Automated analysis of interatomic contacts in proteins. Bioinformatics 15: 327-332 https://doi.org/10.1093/bioinformatics/15.4.327
  34. Sowdhamini, R., N. Srinivasan, B. Shoichet, D. V. Santi, C. Ramakrishnan, and P. Balaram. 1989. Stereochemical modeling of disulfide bridges. Criteria for introduction into proteins by site-directed mutagenesis. Protein Eng. 3: 95-103 https://doi.org/10.1093/protein/3.2.95
  35. Thoren, L. 1981. The dextrans - clinical data. Devel. Biol. Stand. 48: 157-167
  36. Tindbaek, N., A. Svendsen, P. R. Oestergaard, and H. Draborg. 2004. Engineering a substrate-specific cold-adapted subtilisin. Protein Eng. Des. Sel. 17: 149-156 https://doi.org/10.1093/protein/gzh019
  37. Turner, N. J. 2003. Directed evolution of enzymes for applied biocatalysis. Trends Biotechnol. 21: 474-478 https://doi.org/10.1016/j.tibtech.2003.09.001
  38. Williams, G. J., A. S. Nelson, and A. Berry. 2004. Directed evolution of enzymes for biocatalysis and the life sciences. Cell Mol. Life Sci. 61: 3034-3046 https://doi.org/10.1007/s00018-004-4234-5
  39. Wynter, C. V. A., M. Chang, and J. De Jersey. 1997. Isolation and characterization of a thermostable dextranase. Enzyme Microb. Technol. 20: 242-247 https://doi.org/10.1016/S0141-0229(96)00118-4
  40. Zhou, H., M. J. Mazzulla, J. D. Kaufman, S. J. Stahl, P. T. Wingfield, J. S. Rubin, D. P. Bottaro, and R. A. Byrd. 1998. The solution structure of the N-terminal domain of hepatocyte growth factor reveals a potential heparin-binding site. Structure 6: 109-116 https://doi.org/10.1016/S0969-2126(98)00012-4

Cited by

  1. lmo0038Is Involved in Acid and Heat Stress Responses and Specific forListeria monocytogenesLineages I and II, andListeria ivanovii vol.6, pp.3, 2009, https://doi.org/10.1089/fpd.2008.0207
  2. Serovar 4b Complex Predominates AmongListeria monocytogenesIsolates from Imported Aquatic Products in China vol.7, pp.1, 2009, https://doi.org/10.1089/fpd.2009.0353
  3. Deciphering the Biodiversity of Listeria monocytogenes Lineage III Strains by Polyphasic Approaches vol.49, pp.5, 2009, https://doi.org/10.1007/s12275-011-1006-4
  4. Introduction of a disulfide bond leads to stabilization and crystallization of a ricin immunogen vol.79, pp.4, 2011, https://doi.org/10.1002/prot.22933
  5. Engineering and Kinetic Stabilization of the Therapeutic Enzyme Anabeana variabilis Phenylalanine Ammonia Lyase vol.171, pp.7, 2013, https://doi.org/10.1007/s12010-013-0450-5
  6. Computationally designed libraries for rapid enzyme stabilization vol.27, pp.2, 2009, https://doi.org/10.1093/protein/gzt061
  7. Identification of Lactobacillus proteins with different recognition patterns between immune rabbit sera and nonimmune mice or human sera vol.16, pp.None, 2009, https://doi.org/10.1186/s12866-016-0631-9
  8. Lactobacillus kefiri shows inter-strain variations in the amino acid sequence of the S-layer proteins vol.110, pp.4, 2017, https://doi.org/10.1007/s10482-016-0820-4
  9. Adhesion ofLactobacilliand their anti-infectivity potential vol.57, pp.10, 2017, https://doi.org/10.1080/10408398.2014.918533
  10. Lipomyces starkeyi: an emerging cell factory for production of lipids, oleochemicals and biotechnology applications vol.34, pp.10, 2018, https://doi.org/10.1007/s11274-018-2532-6