DOI QR코드

DOI QR Code

New Gene Cluster from Thermophile Bacillus fordii MH602 for Conversion of DL-5-Substituted Hydantoins to L-Amino Acids

  • Mei, Yan-Zhen (College of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology) ;
  • Wan, Yong-Min (College of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology) ;
  • He, Bing-Fang (College of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology) ;
  • Ying, Han-Jie (College of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology) ;
  • Ouyang, Ping-Kai (College of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology)
  • Published : 2009.12.31

Abstract

The thermophile Bacillus fordii MH602 was screened for stereospecifically hydrolyzing DL-5-substituted hydantoins to L-$\alpha$-amino acids. Since the reaction occurs at higher temperature, the advantages for enhancement of substrate solubility and for racemization of DL-5-substituted hydantoins during the conversion were achieved. The hydantoin metabolism gene cluster from thermophile is firstly reported in this paper. The genes involved in hydantoin utilization (hyu) were isolated on an 8.2-kb DNA fragment by restriction site-dependent PCR, and six ORFs were identified by DNA sequence analysis. The hyu gene cluster contained four genes with novel cluster organization characteristics: the hydantoinase gene hyuH, putative transport protein gene hyuP, hyperprotein gene hyuHP, and L-carbamoylase gene hyuC. The hyuH and hyuC genes were heterogeneously expressed in E. coli. The results indicated that hyuH and hyuC are involved in the conversion of DL-5-substituted hydantoins to an N-carbamyl intermediate that is subsequently converted to L-$\alpha$-amino acids. Hydantoinase and carbamoylase from B. fordii MH602 compared respectively with reported hydantoinase and carbamoylase showed the highest identities of 71% and 39%. The novel cluster organization characteristics and the difference of the key enzymes between thermopile B. fordii MH602 and other mesophiles were presumed to be related to the evolutionary origins of concerned metabolism.

Keywords

References

  1. Abendroth, J., K. Niefind, O. May, M. Siemann, C. Syldatk, and D. Schomburg. 2002. The structure of $_{L}-hydantoinase$ from Arthobacter aurescens leads to an understanding of dihydropyrimidinase substrate and enantiospecificity. Biochemistry 41: 8589-8597 https://doi.org/10.1021/bi0157722
  2. Altenbuchner, J., M. Siemann-Herzberg, and C. Syldatk. 2001. Hydantoinases and related enzymes as biocatalysts for the synthesis of unnatural chiral amino acids. Curr. Opin. Biotechnol. 12: 559-563 https://doi.org/10.1016/S0958-1669(01)00263-4
  3. Bradford, M. M. 1976. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254 https://doi.org/10.1016/0003-2697(76)90527-3
  4. Clemente-Jimenez, J. M., S. Mart$\acute{i}$nez-Rodr$\acute{i}$guez, F. Rodr$\acute{i}$guez-Vico, and F. J. Heras-V$\acute{a}$zquez. 2008. Optically pure alphaamino acids production by the 'Hydantoinase Process'. Recent Pat. Biotechnol. 2: 35-46 https://doi.org/10.2174/187220808783330947
  5. Hils, M., P. M$\ddot{u}$nch, J. Altenbuchner, C. Syldatk, and R. Mattes. 2001. Cloning and characterization of genes from Agrobacterium sp. IPI-671 involved in hydantoin degradation. Appl. Microbiol. Biotechnol. 57: 680-688 https://doi.org/10.1007/s002530100818
  6. Hisashi, M., U. Tamio, and S. Shimizu. 1999. Simultaneous recognition of two chiral centers in $\alpha$,$\beta$-diastereomeric amino acids by an $N-carbamoyl-_{L}-\alpha-amino$ acid amidohydrolase from Alcaligenes xylosoxidans. Biotechnol. Lett. 21: 711-775 https://doi.org/10.1023/A:1005592615103
  7. Kumagai, H. 2000. Microbial production of amino acids in Japan. Adv. Biochem. Eng. Biotechnol. 69: 70-85 https://doi.org/10.1007/3-540-44964-7_3
  8. May, O., A. Habenicht, R. Mattes, C. Syldatk, and M. Siemann. 1998. Molecular evolution of hydantoinases. Biol. Chem. 379: 743-747
  9. Mei, Y. Z., B. F. He, N. N. Liu, and P. K. Ouyang. 2009. Screening and distributed features of bacteria with hydantoinase and carbamoylase. Microbiol. Res. 164: 322-329 https://doi.org/10.1016/j.micres.2006.12.006
  10. Mei, Y. Z., B. F. He, and P. K. Ouyang. 2008. Enzymatic production of $_{L}-amino$ acids from the corresponding $_{DL}-5-substituted$ hydantoins by Bacillus fordii MH602. World J. Microbiol. Biotechnol. 24: 375-381 https://doi.org/10.1007/s11274-007-9485-5
  11. Mukohara, Y., T. Ishikawa, K. Watabe, and H. Nakamura. 1994. A thermostable hydantoinase of Bacillus stearothermophilus NS1122A: Cloning, sequencing and high expression of the enzyme genes, and some properties of the expressed enzyme. Biosci. Biotechnol. Biochem. 58: 1621-1626 https://doi.org/10.1271/bbb.58.1621
  12. Ogawa, J., C. L. Soong, S. Kishino, Q. S. Li, N. Horinouchi, and S. Shimizu. 2006. Screening and industrial application of unique microbial reactions involved in nucleic acid and lipid metabolisms. Biosci. Biotechnol. Biochem. 70: 574-582 https://doi.org/10.1271/bbb.70.574
  13. Sambrook, J. and D. W. Russell. 2001. Molecular Cloning, 3rd Ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N. Y
  14. Sergio, M.-R., A.-S. Montserrat, J. C. J. Josefa, J.-P. Vicente, R.-V. Felipe, and J. L. H.-V. Francisco. 2006. Thermodynamic and mutational studies of $_{L}-N-carbamoylase$ from Sinorhizobium meliloti CECT 4114 catalytic centre. Biochimie 88: 827-847 https://doi.org/10.1016/j.biochi.2006.01.012
  15. Shiba, T., K. Takeda, M. Yajima, and M. Tadano. 2002. Genes from Pseudomonas sp. strain BS involved in the conversion of $_{L}-2-Amino-\Delta^{2}-Thiazolin-4-Carbonic$ acid to $_{L}-Cysteine$. Appl. Environ. Microbiol. 68: 2179-2187 https://doi.org/10.1128/AEM.68.5.2179-2187.2002
  16. Stephanie, G. B. and A. D. Rosemary. 2004. Hydantoin hydrolysing enzymes for the enantioselective production of amino acids: New insights and applications. Tetrahedron: Asymmetry 15: 2727-2741 https://doi.org/10.1016/j.tetasy.2004.08.001
  17. Suzuki, S., Y. Takenaka, N. Onishi, and K. Yokozaki. 2005. Molecular cloning and expression of the hyu genes from Microbacterium liquefaciens AJ3912, responsible for the conversion of 5-substituted hydantoins to $\alpha-amino$ acids, in E. coli. Biosci. Biotech. Biochem. 69: 1473-1482 https://doi.org/10.1271/bbb.69.1473
  18. Syldatk, C., O. May, J. Altenbuchner, R. Mattes, and M. Siemann. 1999. Microbial hydantoinases - industrial enzymes from the origin of life? Appl. Microbiol. Biotechnol. 51: 293-309 https://doi.org/10.1007/s002530051395
  19. Watabe, K., T. Ishikawa, Y. Mukohara, and H. Nakamura. 1992, Cloning and sequencing of the genes involved in the conversion of $_{DL}-5-substituted$ hydantoins to the corresponding $_{L}-amino$ acids from the native plasmid of Pseudomonas sp. strain NS671. J. Bacteriol. 144: 962-969
  20. Wagner, T., B. Hantke, and F. Wagner. 1999. Production of $_{L}-methionine$ from $_{DL}-5-(2-methylthioethyl)$ hydantoin by resting cells of a new mutant strain of Arthrobacter sp. DSM7330. J. Biotechnol. 46: 63-68 https://doi.org/10.1016/0168-1656(95)00193-X
  21. Wiese, A., C. Syldatk, R. Mattes, and J. Altenbuchner. 2001. Organization of genes responsible for the stereospecific conversion of hydantoins to $\alpha$-amino acids in Arthrobacter aurescens DSM 3747. Arch. Microbiol. 146: 187-196
  22. Yu, J., J. J. Pei, X. Song, and W. L. Shao. 2007. Restriction site-dependent PCR: An efficient technique for fast cloning of new genes of microorganisms. DNA Res. 6: 283-290 https://doi.org/10.1093/dnares/6.5.283

Cited by

  1. Identification of Inhibitors of Biological Interactions Involving Intrinsically Disordered Proteins vol.16, pp.4, 2009, https://doi.org/10.3390/ijms16047394