• Title/Summary/Keyword: Lipomyces starkeyi $\alpha$-dextranase

Search Result 6, Processing Time 0.026 seconds

Properties of Carbohydrase Prepared from Lipomyces starkeyi JLC26 (Lipomyces starkeyi JLC26에서 유래된 Carbohydrase의 특성)

  • Jun, Sun-Mee;Kim, Do-Man;Kim, Do-Won
    • KSBB Journal
    • /
    • v.14 no.6
    • /
    • pp.713-717
    • /
    • 1999
  • We have isolated a dextranase and amylase constitutive and hyper-producing mutant, Lipomyces starkeyi JLC26, from Lipomyces starkeyi ATCC74054 after mutation using UV irradiation. After partial purification of dextranase and amylase (together DXAMase;both activities were always co-purified) by ammonium sulfate precipitation, CM-Sepharose column chromatography, the specific activities of amylase and dextranase were 5367 and 3045 unit/mg, respectively. The pH effects for activity and stabiligy of both enzymes were similar to each other: Optimum pH and temperature for activity sere at 5.5 and 37$^{\circ}C$ and optimum ranges for stability were at pH 2.5-5.5 and 4-55$^{\circ}C$, respectively. The reaction end products of dextranase and amylase activities were found to the typical for those of endo-dextranase and endo-amylase. When the carbohydrase and maltotriose were reacted, glucose, maltose, isomaltose, maltotriose, panose and ${\alpha}(1{\rightarrow}6)$glucosylmaltotriose were produced by disproportionation reaction.

  • PDF

Rational Introduction of Disulfide Bond to Enhance Optimal Temperature of Lipomyces starkeyi $\alpha$-Dextranase Expressed in Pichia pastoris

  • Chen, Lin;Yu, Chao;Zhou, Xiangshan;Zhang, Yuanxing
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.12
    • /
    • pp.1506-1513
    • /
    • 2009
  • $\alpha$-Dextranase, which can hydrolyze dextran, is largely used in the sugar industry. However, a thermostable $\alpha$-dextranase is needed to alleviate the viscosity of syrups and clean blocked machines. Thus, to improve the optimal temperature of Lipomyces starkeyi $\alpha$-dextranase expressed by Pichia pastoris, the rational introduction of a de novo designed disulfide bond was investigated. Based on the known structure of Penicillium minioluteum dextranase, L. starkeyi $\alpha$-dextranase was constructed using homology modeling. Four amino acids residues were then selected for site-directed mutagenesis to cysteine. When compared with the wild-type dextranase, the mutant DexM2 (D279C/S289C) showed a more than $13^{\circ}C$ improvement on its optimal temperature. DexM2 and DexM12 (T245C/N248C, D279C/S289C) also showed a better thermal stability than the wild-type dextranase. After the introduction of two disulfide bonds, the specific activity of DexM12 was evaluated and found to be two times higher than that of the wild-type. Moreover, DexM12 also showed the highest $V_{max}$.

Cloning and expression of Lipomyces starkeyi dextranase-encoding gene in yeasts

  • Kang, Hee-Kyoung;Park, Ji-Young;An, Joon-Seob;Kim, Seung-Heuk;Kim, Do-Man
    • 한국생물공학회:학술대회논문집
    • /
    • 2005.04a
    • /
    • pp.402-406
    • /
    • 2005
  • Lipomyces starkeyi produces a novel glucanhydrolase containing endo-dextranase and ${\alpha}-amylase$ activities. A cDNA from L. starkeyi encoding a dextranase was isolated and characterized. The 2,052 kb cDNA fragment (lsd1) carrying dextranase gene showed one open reading frame (ORF) composed of 1,824 bp flanked by a 41 bp 5'-UTR and a 184 bp 3'-UTR including a poly(A) tail of 27 bp. The ORF encodes for a 608 amino acid with a predicted molecular mass of 67.6 kDa. There was 77% deduced amino acid sequence identity between the LSD1 dextranase and the dextranase from Penicillium minioluteum. The primary structure of the dextranase from L. starkeyi has distant similarity with enzymes belonging to glycosyl hydrolase family 49. The lsd1 protein was expressed in the Saccharmyces cerevisiae under control of GAL1 promoter and active dextranase was produced.

  • PDF

Glucanhydrolase from Lipomyces starkeyi KSM 22 as Potential Mouthwash Ingredient

  • Kim, Doman;Ryu, Su-Jin;Son, Eun-Ju;Chung, Hyun-Ju;Kim, Seung-Heuk;Kim, Do-Won;Day, Donal-F.
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.6
    • /
    • pp.993-997
    • /
    • 2002
  • A glucanhydrolase (a DXAMase exhibiting both dextranolytic and amylolytic activities) from Lipomyces starkeyi KSM 22 hydrolyzed polysaccharides having ${\alpha}-(1{\rightarrow}3)-,\;{\alpha}(1{\rightarrow}4)-,\;and\;{\alpha}-(1{\rightarrow}6)$-D-glucosidic linkages. The oral hygiene benefits of DXAMase-containing mouthwash were examined in relation to human experimental gingivitis during a 3-week period without brushing. The DXAMase-treated group exhibited a lower increase in plaque accumulation and gingival index score than the chlorhexidine-treated group. The DXAMase-treated group also showed less tongue accumulation, bad taste, and tooth staining, thus indicating a positive role for DXAMase as an antiplaque agent ingredient.

Cloning of the dextranase gene(lsd11) from Lipomyces starkeyi and its expression in Pichia pastoris.

  • Park, Ji-Young;Kang, Hee-Kyoung;Jin, Xing-Ji;Ahn, Joon-Seob;Kim, Seung-Heuk;Kim, Do-Won;Kim, Do-Man
    • 한국생물공학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.644-648
    • /
    • 2005
  • Dextranase (${\alpha}$-1,6-D-glucan-6-glucanogydrolase:E.C. 3.2.1.11) catalyzes the hydrolysis of ${\alpha}$-(1.6) linkages of dextran. A lsd1 gene encoding an extracellular dextranase was isolated from the genomic DNA of L. starkeyi. The lsd11 gene is a synthetic dextranase (lsd1) after codon optimization for gene expression with Pichia pastoris system. A open reading frame of lsd11 gene was 1827 bp and it was inserted into the pPIC3.5K expression vector. The plasmid linearized by Sac I was integrated into the 5'AOX region of the chromosomal DNA of P. pastoris. The lsd11 gene fragment encoding a mature protein of 608 amino acids with a predicted molecular weight of 70 kDa, was expressed in the methylotrophic yeast P. pastoris by controling the alcohol oxidase-1 (AOX1) promoter. The recombinant lds11 was optimized by using the shake-flask expression and upscaled using fermentation technology. More than 9.8 mg/L of active dextranase was obtained after induction by methanol. The optimum pH of LSD11 was found to be 5.5 and the optimum temperature $28^{\circ}C$.

  • PDF

Construction of an Industrial Brewing Yeast Strain to Manufacture Beer with Low Caloric Content and Improved Flavor

  • Wang, Jin-Jing;Wang, Zhao-Yue;Liu, Xi-Feng;Guo, Xue-Na;He, Xiu-Ping;Wense, Pierre Christian;Zhang, Bo-Run
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.4
    • /
    • pp.767-774
    • /
    • 2010
  • In this study, the problems of high caloric content, increased maturation time, and off-flavors in commercial beer manufacture arising from residual sugar, diacetyl, and acetaldehyde levels were addressed. A recombinant industrial brewing yeast strain (TQ1) was generated from T1 [Lipomyces starkeyi dextranase gene (LSD1) introduced, ${\alpha}$-acetohydroxyacid synthase gene (ILV2) disrupted] by introducing Saccharomyces cerevisiae glucoamylase (SGA1) and a strong promoter (PGK1), while disrupting the gene coding alcohol dehydrogenase (ADH2). The highest glucoamylase activity for TQ1 was 93.26 U/ml compared with host strain T1 (12.36 U/ml) and wild-type industrial yeast strain YSF5 (10.39 U/ml), respectively. European Brewery Convention (EBC) tube fermentation tests comparing the fermentation broths of TQ1 with T1 and YSF5 showed that the real extracts were reduced by 15.79% and 22.47%; the main residual maltotriose concentrations were reduced by 13.75% and 18.82%; the caloric contents were reduced by 27.18 and 35.39 calories per 12 oz. Owing to the disruption of the ADH2 gene in TQ1, the off-flavor acetaldehyde concentrations in the fermentation broth were 9.43% and 13.28%, respectively, lower than that of T1 and YSF5. No heterologous DNA sequences or drug resistance genes were introduced into TQ1. Hence, the gene manipulations in this work properly solved the addressed problems in commercial beer manufacture.