• 제목/요약/키워드: Lipomyces starkeyi $\alpha$-dextranase

검색결과 6건 처리시간 0.037초

Lipomyces starkeyi JLC26에서 유래된 Carbohydrase의 특성 (Properties of Carbohydrase Prepared from Lipomyces starkeyi JLC26)

  • 전선미;김도만;김도원
    • KSBB Journal
    • /
    • 제14권6호
    • /
    • pp.713-717
    • /
    • 1999
  • Lipomyces starkeyi ATCC 74054를 UV로 돌연변이하여 선발한 JLC26의 효소적인 특성을 알아보았다. 효소는 70% ammonium sulfate로 침전시키고, CM-Sepharose column chromatography로 부분 정제하였다. 이때 얻어진 각 효소 specific activity는 amylase 활성의 경우는 5367 unit/mg이었고 dextranase 활성의 경우는 3045 unit/mg이었다. 효소의 최적 pH와 온도는 5.5와 37$^{\circ}C$였으며, pH 2.5-5.5와 4-55$^{\circ}C$에서 안정성을 보였다. 부분 정제된 효소는 amylase와 dextranase 활성을 동시에 보이는 100 KDa의 크기를 가지는 하나의 단백질이었다. 이 효소는 maltotriose 기질과 반응할 때 disproportionation reaction 현상을 보여 가지구조를 지닌 panose와 ${\alpha}(1{\rightarrow}6)$glucosylmaltotriose을 생산하였다. 이 균은 starch 배지에서 키워 amylase와 dextranase 활성을 동시에 지니는 효소를 생산함으로써 dextran과 mutan은 구성된 치태를 분해하는 효소재료로의 이용성이 기대된다.

  • PDF

Rational Introduction of Disulfide Bond to Enhance Optimal Temperature of Lipomyces starkeyi $\alpha$-Dextranase Expressed in Pichia pastoris

  • Chen, Lin;Yu, Chao;Zhou, Xiangshan;Zhang, Yuanxing
    • Journal of Microbiology and Biotechnology
    • /
    • 제19권12호
    • /
    • pp.1506-1513
    • /
    • 2009
  • $\alpha$-Dextranase, which can hydrolyze dextran, is largely used in the sugar industry. However, a thermostable $\alpha$-dextranase is needed to alleviate the viscosity of syrups and clean blocked machines. Thus, to improve the optimal temperature of Lipomyces starkeyi $\alpha$-dextranase expressed by Pichia pastoris, the rational introduction of a de novo designed disulfide bond was investigated. Based on the known structure of Penicillium minioluteum dextranase, L. starkeyi $\alpha$-dextranase was constructed using homology modeling. Four amino acids residues were then selected for site-directed mutagenesis to cysteine. When compared with the wild-type dextranase, the mutant DexM2 (D279C/S289C) showed a more than $13^{\circ}C$ improvement on its optimal temperature. DexM2 and DexM12 (T245C/N248C, D279C/S289C) also showed a better thermal stability than the wild-type dextranase. After the introduction of two disulfide bonds, the specific activity of DexM12 was evaluated and found to be two times higher than that of the wild-type. Moreover, DexM12 also showed the highest $V_{max}$.

Cloning and expression of Lipomyces starkeyi dextranase-encoding gene in yeasts

  • Kang, Hee-Kyoung;Park, Ji-Young;An, Joon-Seob;Kim, Seung-Heuk;Kim, Do-Man
    • 한국생물공학회:학술대회논문집
    • /
    • 한국생물공학회 2005년도 생물공학의 동향(XVI)
    • /
    • pp.402-406
    • /
    • 2005
  • Lipomyces starkeyi produces a novel glucanhydrolase containing endo-dextranase and ${\alpha}-amylase$ activities. A cDNA from L. starkeyi encoding a dextranase was isolated and characterized. The 2,052 kb cDNA fragment (lsd1) carrying dextranase gene showed one open reading frame (ORF) composed of 1,824 bp flanked by a 41 bp 5'-UTR and a 184 bp 3'-UTR including a poly(A) tail of 27 bp. The ORF encodes for a 608 amino acid with a predicted molecular mass of 67.6 kDa. There was 77% deduced amino acid sequence identity between the LSD1 dextranase and the dextranase from Penicillium minioluteum. The primary structure of the dextranase from L. starkeyi has distant similarity with enzymes belonging to glycosyl hydrolase family 49. The lsd1 protein was expressed in the Saccharmyces cerevisiae under control of GAL1 promoter and active dextranase was produced.

  • PDF

Glucanhydrolase from Lipomyces starkeyi KSM 22 as Potential Mouthwash Ingredient

  • Kim, Doman;Ryu, Su-Jin;Son, Eun-Ju;Chung, Hyun-Ju;Kim, Seung-Heuk;Kim, Do-Won;Day, Donal-F.
    • Journal of Microbiology and Biotechnology
    • /
    • 제12권6호
    • /
    • pp.993-997
    • /
    • 2002
  • A glucanhydrolase (a DXAMase exhibiting both dextranolytic and amylolytic activities) from Lipomyces starkeyi KSM 22 hydrolyzed polysaccharides having ${\alpha}-(1{\rightarrow}3)-,\;{\alpha}(1{\rightarrow}4)-,\;and\;{\alpha}-(1{\rightarrow}6)$-D-glucosidic linkages. The oral hygiene benefits of DXAMase-containing mouthwash were examined in relation to human experimental gingivitis during a 3-week period without brushing. The DXAMase-treated group exhibited a lower increase in plaque accumulation and gingival index score than the chlorhexidine-treated group. The DXAMase-treated group also showed less tongue accumulation, bad taste, and tooth staining, thus indicating a positive role for DXAMase as an antiplaque agent ingredient.

Cloning of the dextranase gene(lsd11) from Lipomyces starkeyi and its expression in Pichia pastoris.

  • Park, Ji-Young;Kang, Hee-Kyoung;Jin, Xing-Ji;Ahn, Joon-Seob;Kim, Seung-Heuk;Kim, Do-Won;Kim, Do-Man
    • 한국생물공학회:학술대회논문집
    • /
    • 한국생물공학회 2005년도 생물공학의 동향(XVII)
    • /
    • pp.644-648
    • /
    • 2005
  • Dextranase (${\alpha}$-1,6-D-glucan-6-glucanogydrolase:E.C. 3.2.1.11) catalyzes the hydrolysis of ${\alpha}$-(1.6) linkages of dextran. A lsd1 gene encoding an extracellular dextranase was isolated from the genomic DNA of L. starkeyi. The lsd11 gene is a synthetic dextranase (lsd1) after codon optimization for gene expression with Pichia pastoris system. A open reading frame of lsd11 gene was 1827 bp and it was inserted into the pPIC3.5K expression vector. The plasmid linearized by Sac I was integrated into the 5'AOX region of the chromosomal DNA of P. pastoris. The lsd11 gene fragment encoding a mature protein of 608 amino acids with a predicted molecular weight of 70 kDa, was expressed in the methylotrophic yeast P. pastoris by controling the alcohol oxidase-1 (AOX1) promoter. The recombinant lds11 was optimized by using the shake-flask expression and upscaled using fermentation technology. More than 9.8 mg/L of active dextranase was obtained after induction by methanol. The optimum pH of LSD11 was found to be 5.5 and the optimum temperature $28^{\circ}C$.

  • PDF

Construction of an Industrial Brewing Yeast Strain to Manufacture Beer with Low Caloric Content and Improved Flavor

  • Wang, Jin-Jing;Wang, Zhao-Yue;Liu, Xi-Feng;Guo, Xue-Na;He, Xiu-Ping;Wense, Pierre Christian;Zhang, Bo-Run
    • Journal of Microbiology and Biotechnology
    • /
    • 제20권4호
    • /
    • pp.767-774
    • /
    • 2010
  • In this study, the problems of high caloric content, increased maturation time, and off-flavors in commercial beer manufacture arising from residual sugar, diacetyl, and acetaldehyde levels were addressed. A recombinant industrial brewing yeast strain (TQ1) was generated from T1 [Lipomyces starkeyi dextranase gene (LSD1) introduced, ${\alpha}$-acetohydroxyacid synthase gene (ILV2) disrupted] by introducing Saccharomyces cerevisiae glucoamylase (SGA1) and a strong promoter (PGK1), while disrupting the gene coding alcohol dehydrogenase (ADH2). The highest glucoamylase activity for TQ1 was 93.26 U/ml compared with host strain T1 (12.36 U/ml) and wild-type industrial yeast strain YSF5 (10.39 U/ml), respectively. European Brewery Convention (EBC) tube fermentation tests comparing the fermentation broths of TQ1 with T1 and YSF5 showed that the real extracts were reduced by 15.79% and 22.47%; the main residual maltotriose concentrations were reduced by 13.75% and 18.82%; the caloric contents were reduced by 27.18 and 35.39 calories per 12 oz. Owing to the disruption of the ADH2 gene in TQ1, the off-flavor acetaldehyde concentrations in the fermentation broth were 9.43% and 13.28%, respectively, lower than that of T1 and YSF5. No heterologous DNA sequences or drug resistance genes were introduced into TQ1. Hence, the gene manipulations in this work properly solved the addressed problems in commercial beer manufacture.