DOI QR코드

DOI QR Code

유전자 알고리즘을 적용한 혼합유출모형의 개발

Development of Combination Runoff Model Applied by Genetic Algorithm

  • 심석구 (한경대학교 토목공학과 대학원) ;
  • 구보영 ((주) 이산 수자원부) ;
  • 안태진 (한경대학교 토목공학과)
  • Shim, Seok-Ku (Dept. of Civil Engrg. Hankyong National University) ;
  • Koo, Bo-Young (Dept. of Water Resources, ISan Engineering) ;
  • Ahn, Tae-Jin (Dept. of Civil Engrg., Hankyong National University)
  • 발행 : 2009.03.31

초록

탱크모형과 PRMS(Precipitation Runoff Modeling-modular System) 모형으로 섬진강댐 유역의 유출량을 1981년부터 2001년까지 모의 발생하였다. 적용된 각각의 단일모형인 Tank 모형과 PRMS 모형에 의하여 모의된 유출량은 서로 상이한 모의 양상을 나타낸다. 본 연구에서는 Tank 모형과 PRMS 모형과 같은 단일모형에 의하여 모의되는 유출량의 편차를 최소화하고 관측유출량에 보다 잘 부합되는 유출모의결과를 생산하기 위하여 유전자 알고리즘 혼합유출모형을 제안하였다. 제안된 혼합유출모형은 Tank 모형과 PRMS 모형의 각각 결과를 혼합하는 모형이며, 유전자 알고리즘을 적용하여 모의 유출량과 관측 유출량을 최소화하는 Tank 모형과 PRMS 모형에 의한 각각의 유출량의 비율을 결정하는 최적배합비를 산정하였다. 제안된 혼합 모형을 섬진강댐 유역에 적용한 결과, Tank 모형 또는 PRMS 모형과 같은 단일모형으로 유출량을 모의하는 경우보다 두 개의 모형을 적절한 배합비를 도입한 혼합 모형으로 모의된 유출량은 관측유출량과의 각종오차를 작게 하는 것을 보여 주었다.

The Tank model and the PRMS(Precipitation Runoff Modeling-modular System) model have been adopted to simulate runoff data from 1981 to 2001 year in the Seomgin-dam basin. However, the simulated runoff by each single model showed some deviations compared with the observed runoff, respectively. In this study a genetic algorithm combination runoff model has been proposed to minimize deviations between simulated runoff and observed runoff that should yield from single model such as Tank model or PRMS model. The proposed combination runoff model combining the simulated respective output of the Tank model and the PRMS model is to produce the optimum combination ratio of each single model applying to the genetic algorithm which may yield the minimum deviations between simulated runoff and observed one. The proposed combination runoff model has been applied to the Seomgin-dam basin. It has also been shown that the combination model by introducing optimal combination ratio should yield less deviations than single model such as the Tank model or the PRMS model.

키워드

참고문헌

  1. 건설교통부 (1997). 수자원 계획의 최적화에 관한 연구(III)
  2. 건설교통부 (1999). 수자원관리기법 개발조사
  3. 구보영 (2007). 다목적 유전자알고리즘을 이용한 tank모형 매개변수 최적화, 세종대학교 석사학위논문
  4. 배덕효, 정일원, 강태호, 노준우 (2003). '유출성분을 고려한 Tank 모형의 매개변수 자동추정.' 한국수자원학회논문집, 한국수자원학회, 제36권, 제3호, pp. 423-436 https://doi.org/10.3741/JKWRA.2003.36.3.423
  5. 정일원, 배덕효, 김광천 (2005), 'ANN을 활용한 슈퍼앙상블 기법 개발', 2005 한국수자원학회 학술발표회논문집, 한국수자원학회, pp. 889-893
  6. Chen, R.-S., Pi, L.-C., and Hsieh, C.-C. (2007). 'Application of parameter optimization method for calibrating tank model', Journal of the American Water Resources Association, Vol. 41 Issue 2, pp. 389-402 https://doi.org/10.1111/j.1752-1688.2005.tb03743.x
  7. Dawdy, D. R, and O'Donnel, T. (1965). 'Mathematical models of catchment behavior', Journal of Hydraul. Div, Proceedings of the ASCE, pp. 123-136
  8. Deb, K. and Goyal, M. (1995). 'Optimizing engineering designs using a combined genetic search.' Proceedings of the 6th International Conference on Genetic Algorithms, Morgan Kauffman Publishers, pp. 521-528
  9. Kim, H.-Y., and Park, S.-W. (1986). 'Comparison of optimization algorithm in parameter calibration of Tank Model-An evaluation of parameter variation for a linear reservoir (TANK) model with watershed characteristics.' Journal of Korean Society of Agricultural Engineers, Vol. 28, No. 2, pp. 42-52
  10. Kokosiński, Z. (2005). 'Effects of versatile crossover and mutation operators on evolutionary search in partition and permutation problems.' Intelligent Information Processing and Web Mining, pp. 299-308 https://doi.org/10.1007/3-540-32392-9_31
  11. Leavesley, G.H., Lichty, R. W., Troutman, B. M., and Saindon, L.G. (1983). 'Precipitation-runoff modeling system, user's manual.' Water-Resources Investigations, pp. 83-238
  12. Leavesley, G.H., Markstrom, S.L., Brewer, M.S., and Viger, R.J. (1996). 'The modular modeling system(MMS)-the physical process modeling component of a database-centered decision support system for water and power management.' Water, Air, and Soil Pollution 90, pp. 303-311 https://doi.org/10.1007/BF00619290
  13. Nash, J.E, and Sutcliffe, J. V. (1970). 'River flow forecasting through conceptual models, Part I-A discussion of principles.' Journal of Hydrology, 10: pp. 282-290 https://doi.org/10.1016/0022-1694(70)90255-6
  14. Paik. K., Kim, J. H., Kim, H. S., and Lee, D. R. (2005). 'A conceptual rainfall-runoff model considering seasonal variation hydrological processes.' Hydrological Processes, vol. 19, pp. 3837-3850 https://doi.org/10.1002/hyp.5984
  15. Shamseldin, A. Y. and O'Connor, K. M. (1999). 'Real-time combination method for the outputs of different rainfall-runoff models.' Hydrological Sciences Journal, Vol. 44, No. 6, pp. 895-912 https://doi.org/10.1080/02626669909492288
  16. Shamseldin, A. Y. and O'Connor, K.M. and Liang, G. C. (1997). 'Methods for combining the outputs of different rainfall–runoff models.' Journal of Hydrology, Vol. 197, pp. 203-229 https://doi.org/10.1016/S0022-1694(96)03259-3
  17. Sugawara, M. (1995). 'Tank model,' Computer Models of Watershed Hydrology, Singh, V.J., ed., Water Resources Publications, Highlands Ranch, CO
  18. Sugawara, M., Watanabe, I., Ozaki, E. and Katsuyama, Y. (1984). 'Tank Model with snow component.' National Research Center for Disaster Prevention, No. 65, 1984
  19. Yokoo, Y., Kazama, S., Sawamoto, M., and Nishimura, H.(2001). 'Regionalization of lumped water balance model parameters based on multiple regression.' Journal of Hydrology, Vol. 246(1-4), pp. 209-222 https://doi.org/10.1016/S0022-1694(01)00372-9

피인용 문헌

  1. Comparison of Natural Flow Estimates for the Han River Basin Using TANK and SWAT Models vol.45, pp.3, 2012, https://doi.org/10.3741/JKWRA.2012.45.3.301