• Title/Summary/Keyword: Optimum combination ratio

Search Result 125, Processing Time 0.023 seconds

Development of Combination Runoff Model Applied by Genetic Algorithm (유전자 알고리즘을 적용한 혼합유출모형의 개발)

  • Shim, Seok-Ku;Koo, Bo-Young;Ahn, Tae-Jin
    • Journal of Korea Water Resources Association
    • /
    • v.42 no.3
    • /
    • pp.201-212
    • /
    • 2009
  • The Tank model and the PRMS(Precipitation Runoff Modeling-modular System) model have been adopted to simulate runoff data from 1981 to 2001 year in the Seomgin-dam basin. However, the simulated runoff by each single model showed some deviations compared with the observed runoff, respectively. In this study a genetic algorithm combination runoff model has been proposed to minimize deviations between simulated runoff and observed runoff that should yield from single model such as Tank model or PRMS model. The proposed combination runoff model combining the simulated respective output of the Tank model and the PRMS model is to produce the optimum combination ratio of each single model applying to the genetic algorithm which may yield the minimum deviations between simulated runoff and observed one. The proposed combination runoff model has been applied to the Seomgin-dam basin. It has also been shown that the combination model by introducing optimal combination ratio should yield less deviations than single model such as the Tank model or the PRMS model.

Manufacturing Zero-Cement Bricks by Replacing Cement with Recycled Aggregates and Blast Furnace Slag Powder

  • Park, Kyung-Taek;Han, Cheon-Goo;Kim, Dae-Gun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.13 no.1
    • /
    • pp.29-37
    • /
    • 2013
  • In this study, a zero-cement brick is manufactured by replacing cement with recycled aggregates and blast furnace slag powder. Experimental tests were conducted with standard sized samples of $190{\times}57{\times}90mm$ (KS F 4004), and this manufacturing technique was simulated in practice. Results showed that the zero-cement brick with 0.35 W/B had the highest compressive strength, but the lowest absorption ratio. This absorption ratio of zero-cement brick with 0.35 W/B was lower than the required level determined by KS F 4004. Hence, to increase the absorption ratio, crushed fine aggregate (CA) and emulsified waste vegetable oil (EWO) were used in combination in the zero-cement brick. It was found that the zero-cement brick with CA of 20% and EWO of 1% had the optimum combination, in terms of having the optimum strength development (12 MPa) and the optimum absorption ratio (8.4%) that satisfies the level required by KS. In addition, it is demonstrated that for the manufacturing of zero-cement brick of 1000, this technique reduces the manufacturing cost by 5% compared with conventional cement brick.

The Explosion-proof Performance of HPFRCC According to Fiber Combination and Mixing Ratio (섬유조합 및 혼입율 변화에 따른 HPFRCC의 방폭성능)

  • Lee, Jea-Hyeon;Lee, Jong-Tae;Jung, Woung-Seon;Jo, Sung-Jun;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.05a
    • /
    • pp.88-89
    • /
    • 2017
  • Due to the increase in the usage of explosive materials and terrorism, the interest towards the superior explosion protective HPFRCC has risen. In existing research, the optimum ratio for solving the problematic problems such as the optimum fiber incorporation rate and the self-shrinkage crack of HPFRCC had been derived. However, there had been few or even no research upon how effective HPFRCC would perform protective explosion-proof in actual explosion. Therefore, this research compared the explosion-proof performance of HPFRCC according to fiber commination and mixing ratio. As a result, the combination of steel fiber and organic fiber showed excellent flow and strength, and it also improved the explosion resistance.

  • PDF

Compaction and strength behavior of lime-coir fiber treated Black Cotton soil

  • Ramesh, H.N.;Manoj Krishna, K.V.;Mamatha, H.V.
    • Geomechanics and Engineering
    • /
    • v.2 no.1
    • /
    • pp.19-28
    • /
    • 2010
  • This paper describes the compaction and strength behavior of black cotton soil (BC soil) reinforced with coir fibers. Coir used in this study is processed fiber from the husk of coconuts. BC soil reinforced with coir fiber shows only marginal increase in the strength of soil, inhibiting its use for ground improvement. In order to further increase the strength of the soil-coir fiber combination, optimum percentage of 4% of lime is added. The effect of aspect ratio, percentage fiber on the behavior of the composite soil specimen with curing is isolated and studied. It is found that strength properties of optimum combination of BC soil-lime specimens reinforced with coir fibers is appreciably better than untreated BC soil or BC soil alone with coir fiber. Lime treatment in BC soil improves strength but it imparts brittleness in soil specimen. BC soil treated with 4% lime and reinforced with coir fiber shows ductility behavior before and after failure. An optimum fiber content of 1% (by weight) with aspect ratio of 20 for fiber was recommended for strengthening BC soil.

Preliminary Design Conditions for a Thermally Actuated Refrigerator Based on the Vuilleumier Cycle (Vuilleumier 사이클로 작동되는 열구동 냉동기의 예비설계조건)

  • 유호선;강병하
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.12
    • /
    • pp.2358-2367
    • /
    • 1992
  • This paper deals with preliminary design conditions for a thermally actuated Vuilleumier refrigerator/heat pump. The previously reported approximate adiabatic analysis which is based on the 8-volume model makes it possible to evaluate exchanged heats per cycle as well as cyclic pressure, temperature and mass variation of each working volume. Calculated results reveal not only there exists an optimum value for the phase angle and the swept volume ratio maximizing a specific thermal output, but also design parameters can be determined independently of each other. Under a given combination of operating temperature levels, the optimum conditions for refrigeration are different from those for heat pumping and the differences between two operating modes become larger with decreasing the dead volume ratio. Both the optimum phase angle and the optimum swept volume ratio are increased asymptotically toward 0.5 pi and 1.0 respectively, as the dead volume ratio approaches to unity. When a VM machine is used for cooling and heating simultaneously, the design parameters should be carefully determined to reach the best performance.

The Optimum Design Conditions of Stirling Engines Using The Ideal Adiabatic Model (이상적인 단열모델에 의한 스터링기관의 최적설계조건)

  • 유호선
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.3
    • /
    • pp.656-663
    • /
    • 1990
  • To investigate the optimum design conditions of Stirling Engines at the preliminary design stage, comparative study between adoabatoc analysis based on an approximate analytical solution to the Ideal Adiabatic Model and the existing isothermal analysis has been carried out. The optimum phase angle obtained from adiabatic analysis to achieve the maximum work with given combination of design parameters is greater than that from isothermal analysis, while the optimum swept volume ratio is smaller. Effect of variation in the temperature ratio on the work parameter is proved to be stronger in adiabatic analysis. On the contrary, the work parameter by adiabatic analysis is less sensitive to a change in the dead volume ratio. Especially in adiabatic analysis there exists the optimum dead volume ratio maximizing the work parameter, which may provide a lower limit of it. Considering that the adiabatic model is more reasonable, signifiant differences between two methods lead to the conclusion that adiabatic analysis is preferable to isothermal one for the preliminary design of Stirling Engines.

Optimum Design of Greenhouse Roof Shape Using Genetic Algorithms - In Reference to Light Transmissivity - (유전알고리즘을 이용한 온실지붕 형상의 최적설계 - 광투과율을 중심으로 -)

  • 김문기;박우식
    • Journal of Bio-Environment Control
    • /
    • v.7 no.4
    • /
    • pp.290-297
    • /
    • 1998
  • In this study an optimization of greenhouse roof shape was performed to maximize solar light transmission which is one of the most important elements in greenhouse environment. To determine roof shape that maximize the total light transmissivity, a computer model for analysing light transmissivity was composed and the Genetic Algorithms was applied for solving optimization problems. By setting composite model as objective function(fitness function), the optimum combination of design variables(roof inclination angle, width ratio) was searched using Genetic Algorithms. The optimum combination of input variables for the maximum light transmissivity at Suwon in winter was found 40 degree root angle , 0.5 width ratio, for two span greenhouses and 37 $_。 / roof angle, 0.7 width ratio, for single span greenhouses.es.

  • PDF

Influence of Process Parameters on the Breathable Film Strength of Polymer Extrusion (고분자압출의 공정변수가 통기성필름강도에 미치는 영향)

  • Choi, Man-Sung
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.4
    • /
    • pp.625-632
    • /
    • 2012
  • Optimization of process parameters in polymer extrusion is an important task to reduce manufacturing cost. To determine the optimum values of the process parameters, it is essential to find their influence on the strength of polymer breathable thin film. The significance of six important process parameters namely, extruder cylinder temperature, extruder speed, extruder dies temperature, cooling roll temperature, stretching ratio, stretching roll temperature on breathable film strength of polymer extrusion was determined. Moreover, this paper presents the application of Taguchi method and analysis of variance (ANOVA) for maximization of the breathable film strength influenced by extrusion parameters. The optimum parameter combination of extrusion process was obtained by using the analysis of signal-to-noise ratio. The conclusion revealed that extruder speed and stretching ratio were the most influential factor on the film strength, respectively. The best results of film strength were obtained at higher extruder speed and stretching ratio.

Experimental Study of Moisture Vapor Transmission Rate(MVTR) for Breathable Film (통기성필름의 투습도에 관한 실험적 연구)

  • Choi, Man Sung
    • Journal of the Semiconductor & Display Technology
    • /
    • v.15 no.2
    • /
    • pp.81-86
    • /
    • 2016
  • Moisture vapor transmission rate (MVTR) is an important item for many applications of polymer breathable thin film. To determine the optimum values of the process parameters, it is essential to find their influence on The significance of six important process parameters namely, extruder cylinder temperature, extruder speed, extruder dies temperature, cooling roll temperature, stretching ratio, stretching roll temperature on breathable film strength of polymer extrusion was determined. Moreover, this paper presents the application of Taguchi method and analysis of variance (ANOVA) for maximization of the breathable film MVTR influenced by extrusion parameters. The optimum parameter combination of extrusion process was obtained by using the analysis of signal-to-noise ratio. The conclusion revealed that extruder speed and stretching ratio were the most influential factor on the film strength, respectively. The best results of film MVTR were obtained at higher extruder speed and stretching ratio.

A Study on the Combination of Blowing Ratio and Injection Angle in 2-Dimensional Film Cooling (2차원 막냉각의 적정 분사비와 분사각도의 조합에 관한 연구)

  • Son, Chang-Ho;Lee, Geun-Sik;Won, Young-Ho;Rho, Suk-Man;Lee, Jong-Chun
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.553-558
    • /
    • 2001
  • To find the effective combinations of blowing ratio and injection angle for a straight slot film cooling, film cooling characteristics was investigated using both flow visualization experiment and numerical simulation. Injection angles from $15^{\circ}\;to\;50^{\circ}$ and blowing ratios from 0.2 to 3.0 were selected for the simulation. Comparison between experimental and numerical results shows a good agreement, for the case of the injection angle of $30^{\circ}$ and blowing ratio ranging from 0.55 to 2.0. Film cooling effectiveness was found to be an increasing function of blowing ratio. The effects of injection angle became prominent as the blowing ratio increases. An interesting phenomenon was found for the injection angle of $15^{\circ}$ : the lowest film cooling effectiveness for the blowing ratio smaller than 1.0, but the highest film cooling effectiveness for the blowing ratio greater than 2.0 within wide range of downstream region. There exist optimum injection angles corresponding to maximum film cooling effectiveness : injection angle of $25^{\circ}$ for the blowing ratio from 0.2 to 2.0, and injection angle of $15^{\circ}$ for the blowing ratio of 3.0. Present study provides a design combination among film cooling effectiveness, blowing ratio, and injection angle.

  • PDF