DOI QR코드

DOI QR Code

The Expression Patterns of Cdc25A, Cdc25B, Sox2 and Mnb in Central Nervous System in Early Chicken Embryos

  • Zhang, Hui (College of Veterinary Medicine, Nanjing Agricultural University) ;
  • Qin, Junhui (College of Veterinary Medicine, Nanjing Agricultural University) ;
  • Cao, Jingjing (College of Veterinary Medicine, Nanjing Agricultural University) ;
  • Hei, Nainan (College of Veterinary Medicine, Nanjing Agricultural University) ;
  • Xu, Chunsheng (College of Veterinary Medicine, Nanjing Agricultural University) ;
  • Yang, Ping (College of Veterinary Medicine, Nanjing Agricultural University) ;
  • Liu, Haili (College of Veterinary Medicine, Nanjing Agricultural University) ;
  • Chu, Xiaohong (College of Veterinary Medicine, Nanjing Agricultural University) ;
  • Bao, Huijun (College of Veterinary Medicine, Nanjing Agricultural University) ;
  • Chen, Qiusheng (College of Veterinary Medicine, Nanjing Agricultural University)
  • Received : 2008.09.12
  • Accepted : 2009.01.19
  • Published : 2009.06.01

Abstract

The sense and antisense digoxigenin-labeled RNA probes of four genes, Cdc25A, Cdc25B, Sox2 and Mnb, were produced by using SP6 and T7 RNA polymerases, respectively, and in vitro transcription. Expression patterns of the four genes were detected by in situ hybridization in HH (Hamburger and Hamilton) stage 10 chick embryos. In general, expression patterns of the four genes were similar. mRNA of the four genes was mostly restricted to the entire CNS (central nervous system). All were confined to an identical region, neural tube, neural groove and caudal neural plate, corresponding to the notochord or spinal cord, but there was some distinction in specific region or in concentration, for example in somites. The overlap in expression at the same developmental stage in the CNS suggests that the four genes may be functional similar or related in CNS development. Expression patterns of the four genes support specific roles of these regulators in the developing CNS.

Keywords

References

  1. Adayev, T., M. C. Chen-Hwang, N. Murakami, R. Wang and Y. W. Hwang. 2006. Mnb/DYRK1A phosphorylation regulates the interactions of synaptojanin 1 with endocytic accessory proteins. Biochem. Biophys. Res. Commun. 351:1060-1065 https://doi.org/10.1016/j.bbrc.2006.10.169
  2. Bahler, J. and J. R. Pringle. 1998. Pom1p, a fission yeast protein kinase that provides positional information for both polarized growth and cytokinesis. Genes Dev. 12:1356-1370 https://doi.org/10.1101/gad.12.9.1356
  3. Barre, B., A. Vigneron and O. Coqueret. 2005. The STAT3 transcription factor is a target for the Myc and riboblastoma proteins on the Cdc25A promoter. J. Biol. Chem. 280:15673-15681 https://doi.org/10.1074/jbc.M413203200
  4. Benazeraf, B., Q. Chen, E. Peco, V. Lobjois, F. Medevielle, B Ducommun and F. Pituello. 2006. Identification of an unexpected link between the Shh pathway and a G2/M regulator, the phosphatase CDC25B. Dev Biol. 294: 133-147 https://doi.org/10.1016/j.ydbio.2006.02.035
  5. Blasina, A., I. V. D. Weyer, M. C. Laus, W. H. M. L. Luyten, A. E. Parker and C. H. McGowan. 1999. A human homologue of the checkpoint kinase Cds1 directly inhibits Cdc25 phosphatase, Curr. Biol. 9:1-10 https://doi.org/10.1016/S0960-9822(99)80041-4
  6. Boutros, R., C. Dozier and B. Ducommun. 2006. The when and wheres of Cdc25 phosphatases. Curr. Opin Cell Biol. 18:1-7
  7. Boutros, R., V. Lobjois and B. Ducommun. 2007. Cdc25 phosphatases in cancer cells: key players? Good targets? Nature 7:495-507 https://doi.org/10.1038/nrc2169
  8. Bylund, M., E. Andersson, B. G. Novitch and J. Muhr. 2003. Vertebrate neurogenesis is counteracted by Sox1-3 activity. Nat. Neurosci. 6:1162-1168 https://doi.org/10.1038/nn1131
  9. Collignon, J., S. Sockanathan, A. Hacker, M. Cohen-Tannoudji, D. Norris, S. Rastan, M. Stevanovic, P. N. Goodfellow and R. Lovell-Badge. 1996. A comparison of the properties of Sox-3 with Sry and two related genes, Sox-1 and Sox-2. Development. 122:509-520 https://doi.org/10.1073/pnas.242603899
  10. Episkopou, V. 2005. Sox2 functions in adult neural stem cells. Trends Neurosci. 28:219-221 https://doi.org/10.1016/j.tins.2005.03.003
  11. Es, S. V., K. E. Weening and P. N. Devreotes. 2001. The protein kinase YakA regulates G-protein-linked signaling responses during growth and development of Dictyostelium. J. Biol. Chem. 276:30761-30765 https://doi.org/10.1074/jbc.M103365200
  12. Fischbach, K. F. and G. Technau. 1984. Cell degeneration in the developing optic lobes of the sine oculis and small-optic-lobes mutants of Drosophila melanogaster. Dev Biol. 104:219-239 https://doi.org/10.1016/0012-1606(84)90050-2
  13. Foshay, K. M. and G. I. Gallicano. 2008. Regulation of Sox2 by STAT3 initiates commitment to the neural precursor cell fate. Stem Cells Dev. 17:269-278 https://doi.org/10.1089/scd.2007.0098
  14. Garrett, S. and J. Broach. 1989. Loss of Ras activity in Saccharomyces cerevisiae is suppressed by disruptions of a new kinase gene, YAK1, whose product may act downstream of the cAMP-dependent protein kinase. Genes Dev. 3:1336-1348 https://doi.org/10.1101/gad.3.9.1336
  15. Garrett, S., M. M. Menold and J. R. Broach. 1991. The Saccharomyces cere visiae YAK1 gene encodes a protein kinase that is induced by arrest early in the cell cycle. Mol. Cell Biol. 11:4045-4052
  16. Graaf, K. D., P. Hekerman, O. Spelten, A. Herrmann, L. C. Packman, K. Bussow, G. Muller-Newen and W. Becker. 2004. Characterization of cyclin L2, a novel cyclin with an arginine/serine-rich domain. J. Biol. Chem. 279:4612-4624 https://doi.org/10.1074/jbc.M310794200
  17. Hamburger, V. and H. L. Hamilton. 1951. A series of normal stages in the development of the chick embryo. J. Morphol. 88:49-92 https://doi.org/10.1002/jmor.1050880104
  18. Hammerle, B., E. Vera-Samper, S. Speicher, R. Arencibia, S. Martinez and F. J. Tejedor. 2002. Mnb/Dyrk1A is transiently expressed and asymmetrically segregated in neural progenitor cells at the transition to neurogenic divisions. Dev Biol. 246:259-273 https://doi.org/10.1006/dbio.2002.0675
  19. Jinno, S., K. Sutol, A. Nagata, M. Igarashi, Y. Kanaoka, H. Nojima and H. Okayama. 1994. Cdc25A is a novel phosphatase functioning early in the cell cycle. EMBO J. 13:1549-1556
  20. Kamachi, Y., M. Uchikawa and H. Kondoh. 2000. Pairing SOX off: with partners in the regulation of embryonic development. Trends Genet. 16:182-187 https://doi.org/10.1016/S0168-9525(99)01955-1
  21. Kentrup, H., W. Becker, J. Heukelbach, A. Wilmes, A. Schurmann, C. Huppertz, H. Kainulainen and H. G. Joost. 1996. Dyrk, a dual specificity protein kinase with unique structural features whose activity is dependent on tyrosine residues between subdomains VII and VIII, J. Biol. Chem. 271:3488-3495 https://doi.org/10.1074/jbc.271.7.3488
  22. Kumagai, A. and W. G. Dunphy. 1991. The cdc25 protein controls tyrosine dephosphorylation of the cdc2 protein in a cell-free system. Cell. 64:903-914 https://doi.org/10.1016/0092-8674(91)90315-P
  23. Lochhead, P. A., G. Sibbet, N. Morrice and V. Cleghon. 2005. Activation-loop autophosphorylation is mediated by a novel transitional intermediate form of DYRKs. Cell. 121:925-936 https://doi.org/10.1016/j.cell.2005.03.034
  24. Mailand, N., A. V. Podtelejnikov, A. Groth, M. Mann, J. Bartek and J. Lukas. 2002. Regulation of G2/M events by Cdc25A through phosphorylation-dependent modulation of its stability. EMBO J. 21:5911-5920 https://doi.org/10.1093/emboj/cdf567
  25. Matsuo, R., W. Ochiai, K. Nakashima and T. Taga. 2001. A new expression cloning strategy for isolation of substratespecific kinases by using phosphorylation site-specific antibody. J Immunol Methods. 247:141-151 https://doi.org/10.1016/S0022-1759(00)00313-6
  26. Miyata, Y. and E. Nishida. 1999. Distantly related cousins of MAP kinase: biochemical properties and possible physiological functions. Biochem. Biophys. Res. Commun. 266:291-295 https://doi.org/10.1006/bbrc.1999.1705
  27. Molinari, M., C. Mercurio, J. Dominguez, F. Goubin and G. F. Draetta. 2000. Human Cdc25 A inactivation in response to Sphase inhibition and its role in preventing premature mitosis. EMBO Rep. 1:71-79 https://doi.org/10.1093/embo-reports/kvd018
  28. Mozdziak, P. E., D. Hodgson and J. N. Petitte. 2008. Avian somatic cell chimeras using surrogate eggshell technology. Asian-Aust. J. Anim. Sci. 21:801-806
  29. Nigg, E. A. 1995. Cyclin-dependent protein kinases: key regulators of the eukaryotic cell cycle. Bioessays. 17:471-480 https://doi.org/10.1002/bies.950170603
  30. Oogood, P. L. 2002. Progress toward the development of agents to modulate the cell cycle. Curr. Opin. Chem. Biol. 6:472-478 https://doi.org/10.1016/S1367-5931(02)00342-3
  31. Papanayotoul, C., A. Mey, A. M. Birot, Y. Saka, S. Boast, J. C. Smith, J. Samarut and C. D. Stern. 2008. A mechanism regulating the onset of Sox2 expression in the embryonic neural plate. PLoS Biology 6:0109-0123
  32. Perry, J. A. and S. Kornbluth. 2007. Cdc25 and Wee1: analogous opposites. Cell Div. 2:1-40 https://doi.org/10.1186/1747-1028-2-1
  33. Powers, E. A., D. P. Thompson, P. A. Garner-Hamrick, W. He, A. W. Yem, C. A. Bannow, D. J. Staples, G. A. Waszak, C. W. Smith, M. R. Deibel and J. R. C. Fisher. 2000. Identification of a C-terminal Cdc25 sequence required for promotion of germinal vesicle breakdown. Biochem. J. 347:653-660 https://doi.org/10.1042/0264-6021:3470653
  34. Purves, D. and J. W. Lichtman. 1992. Early events in neural development. In: Principles of neuronal development (Ed. Sinauer) 3-72
  35. Rex, M., A. Orme, D. Uwanogho, K. Tointon, P. M. Wigmore, P. T. Sharpe and P. J. Scotting. 1997. Dynamic expression of chicken Sox2 and Sox3 genes in ectoderm induced to form neural tissue. Dev Dyn. 209:323-332 https://doi.org/10.1002/(SICI)1097-0177(199707)209:3<323::AID-AJA7>3.0.CO;2-K
  36. Rudolph, J. 2007. Cdc25 phosphatases: structure, specificity, and mechanism. Biochem. 46:3595-3604 https://doi.org/10.1021/bi700026j
  37. Russell, P. and P. Nurse. 1986. $cdc25^{+}$ functions as an inducer in the mitotic control of fission yeast. Cell 45:145-153 https://doi.org/10.1016/0092-8674(86)90546-5
  38. Souza, G. M., S. Lu and A. Kuspa. 1998. YakA, a protein kinase required for the transition from growth to development in Dictyostelium. Development. 125:2291-2302
  39. Taranova, O. V., S. T. Magness, B. M. Fagan, Y. Wu, N. Surzenko, S. R. Hutton and L. H. Pevny. 2006. Sox2 is a dose-dependent regulator of retinal neural progenitor competence. Genes Dev. 20:1187-1202 https://doi.org/10.1101/gad.1407906
  40. Tejedor, F., X. R. Zhu, E. Kaltenbach, A. Ackermann, A. Baumann, I. Canal, M. Heisenberg, K. F. Fischbach and O. Pongs. 1995. Minibrain: a new protein kinase family involved in postembryonic neurogenesis in Drosophila. Cell 14:287-301 https://doi.org/10.1016/0896-6273(95)90286-4
  41. Uwanogho, D., M. Rex, E. J. Cartwright, G. Pearl, C. Healy, P. J. Scotting and P. T. Sharpe. 1995. Embryonic expression of the chicken Sox2, Sox3 and Sox11 suggests an interactive role in neuronal development. Mech Dev. 49:23-36 https://doi.org/10.1016/0925-4773(94)00299-3
  42. Wen, Z., Z. Zhong and Jr. J. E. Darnell. 1995. Maximal activation of transcription by Stat1 and Stat3 requires both tyrosine and serine phosphorylation. Cell. 82:241-250 https://doi.org/10.1016/0092-8674(95)90311-9
  43. Wen, Z. and Jr. J. E. Darnell. 1997. Mapping of Stat3 serine phosphorylation to a single residue (727) and evidence that serine phosphorylation has no influence on DNA binding of Stat1 and Stat3. Nucleic Acids Res. 25:2062-2067 https://doi.org/10.1093/nar/25.11.2062
  44. Wilker, E. and M. B. Yaffe. 2004. 14-3-3 Proteins-a focus on cancer and human disease. J. Mol. Cell Cardiol. 37:633-642 https://doi.org/10.1016/j.yjmcc.2004.04.015
  45. Yang, E. J., Y. S. Ahn and K. C. Chung. 2001. Protein kinase Dyrk1 activates cAMP response element-binding protein during neuronal differentiation in hippocampal progenitor cells. J. Biol. Chem. 276:39819-39824 https://doi.org/10.1074/jbc.M104091200