Browse > Article
http://dx.doi.org/10.5713/ajas.2009.80515

The Expression Patterns of Cdc25A, Cdc25B, Sox2 and Mnb in Central Nervous System in Early Chicken Embryos  

Zhang, Hui (College of Veterinary Medicine, Nanjing Agricultural University)
Qin, Junhui (College of Veterinary Medicine, Nanjing Agricultural University)
Cao, Jingjing (College of Veterinary Medicine, Nanjing Agricultural University)
Hei, Nainan (College of Veterinary Medicine, Nanjing Agricultural University)
Xu, Chunsheng (College of Veterinary Medicine, Nanjing Agricultural University)
Yang, Ping (College of Veterinary Medicine, Nanjing Agricultural University)
Liu, Haili (College of Veterinary Medicine, Nanjing Agricultural University)
Chu, Xiaohong (College of Veterinary Medicine, Nanjing Agricultural University)
Bao, Huijun (College of Veterinary Medicine, Nanjing Agricultural University)
Chen, Qiusheng (College of Veterinary Medicine, Nanjing Agricultural University)
Publication Information
Asian-Australasian Journal of Animal Sciences / v.22, no.6, 2009 , pp. 781-787 More about this Journal
Abstract
The sense and antisense digoxigenin-labeled RNA probes of four genes, Cdc25A, Cdc25B, Sox2 and Mnb, were produced by using SP6 and T7 RNA polymerases, respectively, and in vitro transcription. Expression patterns of the four genes were detected by in situ hybridization in HH (Hamburger and Hamilton) stage 10 chick embryos. In general, expression patterns of the four genes were similar. mRNA of the four genes was mostly restricted to the entire CNS (central nervous system). All were confined to an identical region, neural tube, neural groove and caudal neural plate, corresponding to the notochord or spinal cord, but there was some distinction in specific region or in concentration, for example in somites. The overlap in expression at the same developmental stage in the CNS suggests that the four genes may be functional similar or related in CNS development. Expression patterns of the four genes support specific roles of these regulators in the developing CNS.
Keywords
Cdc25A; Cdc25B; Sox2; Mnb; CNS; In situ Hybridization; Chicken; Embryo;
Citations & Related Records

Times Cited By Web Of Science : 0  (Related Records In Web of Science)
Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 Adayev, T., M. C. Chen-Hwang, N. Murakami, R. Wang and Y. W. Hwang. 2006. Mnb/DYRK1A phosphorylation regulates the interactions of synaptojanin 1 with endocytic accessory proteins. Biochem. Biophys. Res. Commun. 351:1060-1065   DOI   ScienceOn
2 Bahler, J. and J. R. Pringle. 1998. Pom1p, a fission yeast protein kinase that provides positional information for both polarized growth and cytokinesis. Genes Dev. 12:1356-1370   DOI   ScienceOn
3 Boutros, R., C. Dozier and B. Ducommun. 2006. The when and wheres of Cdc25 phosphatases. Curr. Opin Cell Biol. 18:1-7
4 Es, S. V., K. E. Weening and P. N. Devreotes. 2001. The protein kinase YakA regulates G-protein-linked signaling responses during growth and development of Dictyostelium. J. Biol. Chem. 276:30761-30765   DOI   ScienceOn
5 Fischbach, K. F. and G. Technau. 1984. Cell degeneration in the developing optic lobes of the sine oculis and small-optic-lobes mutants of Drosophila melanogaster. Dev Biol. 104:219-239   DOI   ScienceOn
6 Foshay, K. M. and G. I. Gallicano. 2008. Regulation of Sox2 by STAT3 initiates commitment to the neural precursor cell fate. Stem Cells Dev. 17:269-278   DOI   ScienceOn
7 Jinno, S., K. Sutol, A. Nagata, M. Igarashi, Y. Kanaoka, H. Nojima and H. Okayama. 1994. Cdc25A is a novel phosphatase functioning early in the cell cycle. EMBO J. 13:1549-1556   PUBMED
8 Matsuo, R., W. Ochiai, K. Nakashima and T. Taga. 2001. A new expression cloning strategy for isolation of substratespecific kinases by using phosphorylation site-specific antibody. J Immunol Methods. 247:141-151   DOI   PUBMED   ScienceOn
9 Miyata, Y. and E. Nishida. 1999. Distantly related cousins of MAP kinase: biochemical properties and possible physiological functions. Biochem. Biophys. Res. Commun. 266:291-295   DOI   ScienceOn
10 Papanayotoul, C., A. Mey, A. M. Birot, Y. Saka, S. Boast, J. C. Smith, J. Samarut and C. D. Stern. 2008. A mechanism regulating the onset of Sox2 expression in the embryonic neural plate. PLoS Biology 6:0109-0123
11 Perry, J. A. and S. Kornbluth. 2007. Cdc25 and Wee1: analogous opposites. Cell Div. 2:1-40   DOI   PUBMED
12 Rudolph, J. 2007. Cdc25 phosphatases: structure, specificity, and mechanism. Biochem. 46:3595-3604   DOI   PUBMED   ScienceOn
13 Russell, P. and P. Nurse. 1986. $cdc25^{+}$ functions as an inducer in the mitotic control of fission yeast. Cell 45:145-153   DOI   ScienceOn
14 Souza, G. M., S. Lu and A. Kuspa. 1998. YakA, a protein kinase required for the transition from growth to development in Dictyostelium. Development. 125:2291-2302   PUBMED
15 Tejedor, F., X. R. Zhu, E. Kaltenbach, A. Ackermann, A. Baumann, I. Canal, M. Heisenberg, K. F. Fischbach and O. Pongs. 1995. Minibrain: a new protein kinase family involved in postembryonic neurogenesis in Drosophila. Cell 14:287-301   DOI   ScienceOn
16 Mozdziak, P. E., D. Hodgson and J. N. Petitte. 2008. Avian somatic cell chimeras using surrogate eggshell technology. Asian-Aust. J. Anim. Sci. 21:801-806
17 Barre, B., A. Vigneron and O. Coqueret. 2005. The STAT3 transcription factor is a target for the Myc and riboblastoma proteins on the Cdc25A promoter. J. Biol. Chem. 280:15673-15681   DOI   ScienceOn
18 Blasina, A., I. V. D. Weyer, M. C. Laus, W. H. M. L. Luyten, A. E. Parker and C. H. McGowan. 1999. A human homologue of the checkpoint kinase Cds1 directly inhibits Cdc25 phosphatase, Curr. Biol. 9:1-10   DOI   ScienceOn
19 Oogood, P. L. 2002. Progress toward the development of agents to modulate the cell cycle. Curr. Opin. Chem. Biol. 6:472-478   DOI   PUBMED   ScienceOn
20 Molinari, M., C. Mercurio, J. Dominguez, F. Goubin and G. F. Draetta. 2000. Human Cdc25 A inactivation in response to Sphase inhibition and its role in preventing premature mitosis. EMBO Rep. 1:71-79   DOI   ScienceOn
21 Uwanogho, D., M. Rex, E. J. Cartwright, G. Pearl, C. Healy, P. J. Scotting and P. T. Sharpe. 1995. Embryonic expression of the chicken Sox2, Sox3 and Sox11 suggests an interactive role in neuronal development. Mech Dev. 49:23-36   DOI   PUBMED   ScienceOn
22 Episkopou, V. 2005. Sox2 functions in adult neural stem cells. Trends Neurosci. 28:219-221   DOI   PUBMED   ScienceOn
23 Lochhead, P. A., G. Sibbet, N. Morrice and V. Cleghon. 2005. Activation-loop autophosphorylation is mediated by a novel transitional intermediate form of DYRKs. Cell. 121:925-936   DOI   ScienceOn
24 Yang, E. J., Y. S. Ahn and K. C. Chung. 2001. Protein kinase Dyrk1 activates cAMP response element-binding protein during neuronal differentiation in hippocampal progenitor cells. J. Biol. Chem. 276:39819-39824   DOI   ScienceOn
25 Taranova, O. V., S. T. Magness, B. M. Fagan, Y. Wu, N. Surzenko, S. R. Hutton and L. H. Pevny. 2006. Sox2 is a dose-dependent regulator of retinal neural progenitor competence. Genes Dev. 20:1187-1202   DOI   ScienceOn
26 Hammerle, B., E. Vera-Samper, S. Speicher, R. Arencibia, S. Martinez and F. J. Tejedor. 2002. Mnb/Dyrk1A is transiently expressed and asymmetrically segregated in neural progenitor cells at the transition to neurogenic divisions. Dev Biol. 246:259-273   DOI   ScienceOn
27 Kamachi, Y., M. Uchikawa and H. Kondoh. 2000. Pairing SOX off: with partners in the regulation of embryonic development. Trends Genet. 16:182-187   DOI   ScienceOn
28 Boutros, R., V. Lobjois and B. Ducommun. 2007. Cdc25 phosphatases in cancer cells: key players? Good targets? Nature 7:495-507   DOI   ScienceOn
29 Graaf, K. D., P. Hekerman, O. Spelten, A. Herrmann, L. C. Packman, K. Bussow, G. Muller-Newen and W. Becker. 2004. Characterization of cyclin L2, a novel cyclin with an arginine/serine-rich domain. J. Biol. Chem. 279:4612-4624   DOI   ScienceOn
30 Rex, M., A. Orme, D. Uwanogho, K. Tointon, P. M. Wigmore, P. T. Sharpe and P. J. Scotting. 1997. Dynamic expression of chicken Sox2 and Sox3 genes in ectoderm induced to form neural tissue. Dev Dyn. 209:323-332   DOI   ScienceOn
31 Kentrup, H., W. Becker, J. Heukelbach, A. Wilmes, A. Schurmann, C. Huppertz, H. Kainulainen and H. G. Joost. 1996. Dyrk, a dual specificity protein kinase with unique structural features whose activity is dependent on tyrosine residues between subdomains VII and VIII, J. Biol. Chem. 271:3488-3495   DOI   PUBMED
32 Kumagai, A. and W. G. Dunphy. 1991. The cdc25 protein controls tyrosine dephosphorylation of the cdc2 protein in a cell-free system. Cell. 64:903-914   DOI   ScienceOn
33 Wilker, E. and M. B. Yaffe. 2004. 14-3-3 Proteins-a focus on cancer and human disease. J. Mol. Cell Cardiol. 37:633-642   DOI   ScienceOn
34 Hamburger, V. and H. L. Hamilton. 1951. A series of normal stages in the development of the chick embryo. J. Morphol. 88:49-92   DOI
35 Benazeraf, B., Q. Chen, E. Peco, V. Lobjois, F. Medevielle, B Ducommun and F. Pituello. 2006. Identification of an unexpected link between the Shh pathway and a G2/M regulator, the phosphatase CDC25B. Dev Biol. 294: 133-147   DOI   ScienceOn
36 Wen, Z. and Jr. J. E. Darnell. 1997. Mapping of Stat3 serine phosphorylation to a single residue (727) and evidence that serine phosphorylation has no influence on DNA binding of Stat1 and Stat3. Nucleic Acids Res. 25:2062-2067   DOI   ScienceOn
37 Wen, Z., Z. Zhong and Jr. J. E. Darnell. 1995. Maximal activation of transcription by Stat1 and Stat3 requires both tyrosine and serine phosphorylation. Cell. 82:241-250   DOI   ScienceOn
38 Garrett, S., M. M. Menold and J. R. Broach. 1991. The Saccharomyces cere visiae YAK1 gene encodes a protein kinase that is induced by arrest early in the cell cycle. Mol. Cell Biol. 11:4045-4052   PUBMED
39 Purves, D. and J. W. Lichtman. 1992. Early events in neural development. In: Principles of neuronal development (Ed. Sinauer) 3-72
40 Bylund, M., E. Andersson, B. G. Novitch and J. Muhr. 2003. Vertebrate neurogenesis is counteracted by Sox1-3 activity. Nat. Neurosci. 6:1162-1168   DOI   ScienceOn
41 Powers, E. A., D. P. Thompson, P. A. Garner-Hamrick, W. He, A. W. Yem, C. A. Bannow, D. J. Staples, G. A. Waszak, C. W. Smith, M. R. Deibel and J. R. C. Fisher. 2000. Identification of a C-terminal Cdc25 sequence required for promotion of germinal vesicle breakdown. Biochem. J. 347:653-660   DOI   ScienceOn
42 Collignon, J., S. Sockanathan, A. Hacker, M. Cohen-Tannoudji, D. Norris, S. Rastan, M. Stevanovic, P. N. Goodfellow and R. Lovell-Badge. 1996. A comparison of the properties of Sox-3 with Sry and two related genes, Sox-1 and Sox-2. Development. 122:509-520   DOI   PUBMED   ScienceOn
43 Garrett, S. and J. Broach. 1989. Loss of Ras activity in Saccharomyces cerevisiae is suppressed by disruptions of a new kinase gene, YAK1, whose product may act downstream of the cAMP-dependent protein kinase. Genes Dev. 3:1336-1348   DOI   ScienceOn
44 Mailand, N., A. V. Podtelejnikov, A. Groth, M. Mann, J. Bartek and J. Lukas. 2002. Regulation of G2/M events by Cdc25A through phosphorylation-dependent modulation of its stability. EMBO J. 21:5911-5920   DOI   ScienceOn
45 Nigg, E. A. 1995. Cyclin-dependent protein kinases: key regulators of the eukaryotic cell cycle. Bioessays. 17:471-480   DOI   PUBMED   ScienceOn