결합재 구성에 따른 50MPa급 고강도 콘크리트의 수축 변형 특성

Shrinkage Characteristics of 50MPa High-strength Concrete with Compositions of Cementitious Materials

  • 정형철 (고려대학교 건축.사회환경공학부) ;
  • 민경환 (고려대학교 건축.사회환경공학부) ;
  • 양준모 (고려대학교 건축.사회환경공학부) ;
  • 윤영수 (고려대학교 건축.사회환경공학부)
  • 투고 : 2008.12.03
  • 심사 : 2009.03.03
  • 발행 : 2009.05.30

초록

본 연구는 대형 대단면 지하공간에 적용하기 위한 고강도 콘크리트의 개발 및 적용을 위한 연구의 일환으로 50MPa급의 고강도 콘크리트의 제조를 위해 플라이애쉬와 고로슬래그미분말의 치환에 따른 최적 배합을 선정하고, 비구속 수축 실험과 수축균열 실험을 통해 정량적으로 평가하였다. 콘크리트의 압축강도는 전배합이 7일 재령에서 30MPa을 넘었고, 28일 재령에서는 설계강도를 모두 안정적으로 획득하였다. 고강도 콘크리트에 고로슬래그를 사용할 경우 자기수축량이 커지고, 다량 치환할 경우 수축변형이 증가하고 강도발현이 지연되어 수축에 의한 균열 발생의 우려가 있다. 혼화재를 다량 치환한 고강도 콘크리트 배합은 수화반응과 건조 효과에 영향을 주는 초기 재령의 양생 조건에 대한 검토가 필요하다.

This study forms part of a research project that was carried out on the development and application of high-strength concrete for large underground spaces. In order to develop 50MPa high-strength concrete, eight optimal mixtures with different portions of fly ash and ground granulated blast furnace slag were selected. For assessments of shrinkage characteristics, free shrinkage tests with prismatic specimens and shrinkage crack tests were performed. The compressive strength was more than 30MPa at 7days, and stable design strength was acquired at 28days. High-strength concrete containing blast furnace slag shows large autogenous shrinkage, while large shrinkage deformations and cracks will occur when mixtures are replaced with large volumes of cementitious materials. Hence, for these high-strength concrete mixtures, the curing conditions of initial ages that affect the reaction of hydration and drying effects need to be checked.

키워드

참고문헌

  1. 터널표준시방서, 건설 교통부, 1996
  2. 건축공사표준시방서, 대한건축학회, 2006
  3. 이회근, 이광명, 김우, 고강도 플라이애쉬 콘크리트의 자기수축 예측 모델, 한국콘크리트학회논문집, Vol. 15, No. 1, 2003, pp. 133-142
  4. 콘크리트구조설계기준, 한국콘크리트학회, 2007
  5. 콘크리트표준시방서, 한국콘크리트학회, 2003
  6. 황인성, 한천구, 레미콘 품질관리 실무, 기문당, 2005, pp. 72-95
  7. AASHTO Designation PP34-98, Standard Practice for Estimating the Crack Tendency of Concrete, AASHTO, 2001, pp. 179-182
  8. Boniface, A., Some Technical Lessons Learnt from Construction of the Lesotho Highlands Water Project Transfer Tunnel, Tunnelling &Underground Space Technology, Vol. 14, No.1, 1999, pp. 29-35 https://doi.org/10.1016/S0886-7798(99)00011-5
  9. Bouzouzaa, N., and Malhotra, V.M., Performance of Lab-Produced HVFA-Blended Cements in Concrete, Concrete International, Vol. 23, No.4, 2001, pp. 31-35
  10. Carrasquillo, R.L., Nilson, A.H., and Slate,F.O. Properties of High Strength Concrete Subject to Short-Term Loads, ACI Journal Proceedings, Vol. 78, No. 3, 1981, pp. 171-178
  11. CEB-FIP Structural Concrete; Textbook on Behavior, Design and Performance, Vol.1, Sprint Druck Stuttgart, 1999, pp. 43-46
  12. Rienzo, F.D., Oreste, P., and Pelizza, S. Subsurface Geological-Geotechnical Modelling to Sustain Under ground Civil Planning, Engineering Geology, Vol. 96, No. 3-4, 2008, pp. 187-204
  13. JCI Test Method for Autogeneous Shrinkage and Autogeneous Expansion of Cement Paste, Mortar and Concrete, Report by Technical Committee on Autogeneous Shrinkage of Concrete of Japan Concrete Institute, 1996,pp. 195-198
  14. Kovler, K., Schamban, I., Igarashi, S., and Bentur, A. Influence of Mix Proportions and Curing Conditions on Tensile Splitting Strength of High Strength Concretes, Material &Structure, Vol. 32, No. 7, 1999, pp. 500-505 https://doi.org/10.1007/BF02481634
  15. Monnikhof, R.A.H., Edelenbos, J., Hoeven, F.V.D.,and Krogt, R.A.A, The New Underground Planning Map of the Netherlands: a Feasibility Study of the Possibilities of the Use of Underground Space, Tunnelling. & Underground Space Technology, Vol. 14, No. 3, 1999, pp.341-347 https://doi.org/10.1016/S0886-7798(99)00049-8
  16. Romer, M., Holzer, L., and Pfiffner, M. SwissTunnel Structural: Concrete Damage by Formation of Thaumasite, Cement & Concrete Composites, Vol. 25, No. 8, 2003, pp. 1111-1117 https://doi.org/10.1016/S0958-9465(03)00141-0
  17. Tazawa, E., Miyazawa, S., and Kasai, T.Chemical Shrinkage and Autogeneous Shrinkage of Cement Paste, Cement & Concrete Research,Vol. 25, No. 2, 1995, pp. 288-292 https://doi.org/10.1016/0008-8846(95)00011-9
  18. Tongeren, H.V., and Tonnisen, J.Y. Research on the Structural Behavior of Concrete inTunnel Structures, Tunnelling & Underground Space Technology, Vol. 3, No. 4, 1988, pp.375-383 https://doi.org/10.1016/0886-7798(88)90009-0
  19. Yoon, Y.-S. Won, J.-P. Woo, S.-K. and Song, Y.-C. Enhanced Durability Performance of Fly Ash Concrete for Concrete-faced Rockfill Dam Application, Cement & Concrete Research,Vol. 32, No. 1, 2002, pp. 23-30 https://doi.org/10.1016/S0008-8846(01)00623-8
  20. Yuan, Y., Jiang, X., and Lee, C.F. Tunnel Waterproofing Practice in China, Tunnelling & Underground Space Technology, Vol.15,No. 2, 2000, pp. 227-233 https://doi.org/10.1016/S0886-7798(00)00048-1