In Vitro Study on the Initial Stability of Two Tapered Dental Implant Systems in Poor Bone Quality

연질 골에서 두 종류의 테이퍼 형태 임플란트의 초기 안정성에 관한 실험실적 연구

  • Kim, Duck-Rae (Department of Prosthodontics and Dental Research Institute, School of Dentistry, Seoul National University) ;
  • Kim, Myung-Joo (Department of Prosthodontics and Dental Research Institute, School of Dentistry, Seoul National University) ;
  • Kwon, Ho-Beom (Department of Prosthodontics and Dental Research Institute, School of Dentistry, Seoul National University) ;
  • Lee, Seok-Hyung (Department of Prosthodontics, Samsung Medical Center, Sungkyunkwan University School of Medicine) ;
  • Lim, Young-Jun (Department of Prosthodontics and Dental Research Institute, School of Dentistry, Seoul National University)
  • 김덕래 (서울대학교 치의학대학원 치과보철학 교실) ;
  • 김명주 (서울대학교 치의학대학원 치과보철학 교실) ;
  • 권호범 (서울대학교 치의학대학원 치과보철학 교실) ;
  • 이석형 (성균관대학교 의과대학 치과학 교실) ;
  • 임영준 (서울대학교 치의학대학원 치과보철학 교실)
  • Received : 2009.09.05
  • Accepted : 2009.12.25
  • Published : 2009.12.31

Abstract

The successful outcome of dental implants is mainly the result of intial implant stability following placement. The aim of this study was to investigate the effect of a self-tapping blades and implant design on initial stability of two tapered implant systems in poor bone quality. The two different implant systems included one with self-tapping blades and one without self-tapping blades. D4 bone model using Solid Rigid Polyurethane Form was used to simulate poor bone densities. The insertion torque during implant placement was recorded. Resonance frequency Analysis (RFA), measured as the implant stability quotient (ISQ), was assessed immediately after insertion. Finally, the implant-bone specimen was transferred to an Universal Testing Machine to measure the axial pull-out force. Insertion torque values and maximum pull-out torque value of the non self-tapping implants were significantly higher than those in the self-tapping group (P = 0.008). No statistically differences were noted between the two implant designs in RFA. Within the each implant system, no correlation among insertion torque, maximum pull-out torque and RFA value could be determined. Higher insertion torque of the non-self-tapping implants appeared to confirm higher clinical initial stability. In conclusion, implants without self-tapping blades have higher initial stability than implants with self-tapping blades in poor bone quality.

임플란트의 성공은 식립 후의 초기 안정성 (Initial stability)의 결과가 중요한 영향을 준다. 이 연구의 목적은 연질 골에서 두 종류의 테이퍼 형태 임플란트가 임플란트의 디자인과 self-tapping blade의 유무에 따라서 초기 안정성에 주는 영향을 알아보는 것이다. Self-tapping blade를 가지고 있는 것과 가지고 있지 않은 두 종류의 테이퍼 형태 임플란트가 사용되었다. Solid Rigid Polyurethane Form으로 연질 골 상태인 D4 골 모형을 재현하였다. 임플란트 고정체를 식립하면서 초기 안정성 값을 기록하고, 식립 직후 implant stability quotient (ISQ)을 측정하여 Resonance frequency Analysis (RFA)를 평가하였다. 마지막으로 임플란트가 식립된 모형골을 만능 시험기에 부착하여 장축 방향으로의 pull-out force를 측정하였다. 초기 안정성 값과 최대 pull-out torque 값은 non self-tapping implants가 self-tapping group에 비하여 통계학적으로 유의하게 큰 평균값을 나타냈다 (P = 0.008). 공진 주파수 분석 결과인 ISQ 값은 거의 비슷한 평균값을 보였으면 통계학적으로 차이가 없었다. 각 임플란트 시스템에서 식립 토크와 pull-out 최대 토크 그리고 공진 주파수 간에는 상관관계를 나타내지 않았다. Non self-tapping 임플란트의 높은 식립 토크는 임상적으로 우수한 초기 안정성을 의미한다. 결론적으로 연질 골에서 self-tapping blade가 없는 임플란트가 있는 것 보다 더 우수한 초기 안정성을 보였다.

Keywords

References

  1. Meredith N. Assessment of implant stability as a prognostic determinant. Int J Prosthodont, 1998;11: 491-501
  2. Isidor F. Mobility Assessment with the Periotest system in relation to histologic findings of oral implants. Int J Oral Maxillofac Implants, 1998;13: 377-383
  3. Meredith N, Alleyne D, Cawley P. Quantitative determination of the stability of the implant-tissue interface using resonance frequency analysis. Clin Oral Implants Res, 1996;7:261-267 https://doi.org/10.1034/j.1600-0501.1996.070308.x
  4. O'Sullivan D, Sennerby L, Meredith N. Measurements comparing the initial stability of five designs of dental implants: a human cadaver study. Clin Implant Dent Relat Res, 2000;2(2):85-92 https://doi.org/10.1111/j.1708-8208.2000.tb00110.x
  5. Friberg B, Sennerby L, Linden B, Grondahl K, Lekholm U. Stability measurements of one-stage Br${\aa}$nemark implants during healing in mandibles. A clinical resonance frequency analysis study. Int J Oral Maxillofac Surg, 1999;28:266-272 https://doi.org/10.1016/S0901-5027(99)80156-8
  6. Atsumi M, Park SH, Wang HL. Methods used to assess implant stability: current status. Int J Oral Maxillofac Implants, 2007;22:743-754
  7. Ersanli S, Karabuda C, Beck F, Leblebicioglu B. Resonance frequency analysis of one-stage dental implant stability during the osseointegration period. J Periodontol, 2005;76(7):1066-1071 https://doi.org/10.1902/jop.2005.76.7.1066
  8. Friberg B, Sennerby L, Roos J, Johansson P, Strid CG, Lekholm U. Evaluation of bone density using cutting resistance measurements and microradiography: An in vitro study in pig ribs. Clin Oral Implants Res, 1995;6:164-171 https://doi.org/10.1034/j.1600-0501.1995.060305.x
  9. Wong M, Eulenberger J, Schenk R, Hunziker E. Effect of surface topology on the osseointegration of implant materials in trabecular bone. J Biomed Mater Res, 1995;29:1567-1575 https://doi.org/10.1002/jbm.820291213
  10. O'Sillivan D, Sennerby L, Meredith N. Influence of implant taper on the primary and secondary stability of osseointegrated titanium implants. Clin Oral Implants Res, 2004;15:474-480 https://doi.org/10.1111/j.1600-0501.2004.01041.x
  11. Glauser R, Sennerby L, Meredith N, et al. Resonance frequency analysis of implants subjected to immediate or early functional occlusal loading. Successful vs. failing implants. Clin Oral Implants Res, 2004;15:428-434 https://doi.org/10.1111/j.1600-0501.2004.01036.x
  12. Olsson M, Friberg B, Nilson H, Kultje C. MkⅡ-a modified self tapping Branemark implants: 3-year results of a controlled prospective pilot study. Int J Oral Maxillofac Implants, 1995;10:15-21
  13. Chong L, Khocht A, Suzuki JB, Gaughan J. Effect of implant design on initial stability of tapered implants. J Oral Implantol, 2009;35(3):130-135 https://doi.org/10.1563/1548-1336-35.3.130
  14. American Society for Testing Materials. Standard specification for rigid polyurethane foam for use as a standard material for testing orthopedic devices and instruments. Report: F1839-1897
  15. Sunit P, Mahon A, Green S, McMurtry I, Port A. A biomechanical study comparing a raft of 3.5 mm cortical screws with 6.5 mm cancellous screws in depressed tibial plateau fractures. Knee, 2006;13:231- 235 https://doi.org/10.1016/j.knee.2006.03.003
  16. Branema가 P-I, Lekholm U, Zarb GA, Albrektsson T. Tissue-Integrated Prosthesis. Quintessence Publishing Co. 1985, P. 202
  17. Huang HM, Chiu CL, Y도 CY, Lee SY. Factors influencing the resonance frequency analysis of dental implant. J Oral Maxillofac Surg, 2003;61(10): 1184-1188 https://doi.org/10.1016/S0278-2391(03)00680-3
  18. Al-Nawas B, Wagner W, Grotz KA. Insertion torque and resonance frequency analysis of dental implant systems in an animal model with loaded implants. Int J Oral Maxillofac Implants, 2006;21(5):726-732
  19. Zix J, Kessler-Liechti G, Mericske-Stern R. Stability measurements of 1-stage implants in the maxilla by means for resonance frequency analysis: a pilot study. Int J Oral Maxillofac Implants, 2005;20: 747-752
  20. Dhert WJ, Verheyen CC, Braak LH, et al. A finite element analysis of the push-out test: Influence of test conditions. J Biomed Mater Res, 1992;26: 119-130 https://doi.org/10.1002/jbm.820260111