Study of Antimicrobial Properties for Silver/Celite Composites

은/셀라이트 복합체의 항균특성에 관한 연구

  • Lee, Chul-Jae (Division of Chemical Industry, Yeungnam College of Science & Technology) ;
  • Kim, Byung-So (Division of Chemical Industry, Yeungnam College of Science & Technology)
  • 이철재 (영남이공대학 화장품.화공계열) ;
  • 김병소 (영남이공대학 화장품.화공계열)
  • Received : 2009.08.11
  • Accepted : 2009.09.02
  • Published : 2009.12.10

Abstract

In present work, the antimicrobial effect of silver-nanoparticles/celite (SN/C) and silver carbonate/celite (SC/C) composites on Escherichia coli (E. coli) by use of silver nanoparticles and silver carbonate has been studied. Characteristics of the SN/C and SC/C composites were identified by scanning electron microscopy (SEM), X-ray diffraction (XRD) and atomic absorption spectroscopy (AAS). SN/C and SC/C composites showed antimicrobial activity and the minimum inhibitory concentration of E. coli were 0.541, 0.344 ppm and the complete sterilizing concentration for the test organism were 1.427, 1.623 ppm. From the results we identified that SN/C and SC/C composites have antimicrobial activity to E. coli.

본 연구에서는 은 나노 입자와 탄산은(Silver Carbonate)을 이용하여 제조된 은나노/셀라이트(SN/C)와 탄산은/셀라이트(SC/C) 복합체의 대장균에 대한 항균특성을 조사하였다. SN/C와 SC/C 복합체의 특성은 주사전자현미경, X-선 회절법, 그리고 원자흡수분광법에 의해 알아보았다. SN/C와 SC/C 복합체의 대장균에 대한 최소 억제농도는 0.541과 0.344 ppm이었고 완전 사멸농도는 1.427과 1.623 ppm으로 나타났다. 상기의 결과로 SN/C와 SC/C 복합체의 대장균에 대한 항균효과를 확인할 수 있었다.

Keywords

References

  1. S. Silver, FEMS Microbiology Reviews, 27, 341 (2003) https://doi.org/10.1016/S0168-6445(03)00047-0
  2. S. L. Percival, P. G. Bowler, and D. Russell, J. Hosp. Infect., 60, 1 (2005) https://doi.org/10.1016/j.jhin.2004.11.014
  3. N. Grier, Silver and Its Compounds, Disinfection, Sterilization and Preservation, 375, Lea and Febiger, Philadelphia (1983)
  4. S. Y. Liau, D. C. Read, W. J. Pugh, J. R. Furr, and A. D. Russell, Lett. Appl. Microbiol., 25, 279 (1997) https://doi.org/10.1046/j.1472-765X.1997.00219.x
  5. R. I. Davies and S. F. Etris, Catalysis Today, 35, 87 (1997) https://doi.org/10.1016/S0920-5861(96)00203-9
  6. C. J. Lee, D. Y. Kim, and B. S. Kim, J. Korean Ind. Eng. Chem., 18, 396 (2007)
  7. M. Mittal and K. J. Rockne, Chemosphere, 74, 1134 (2009) https://doi.org/10.1016/j.chemosphere.2008.10.012
  8. J. R. Szczech and S. Jin, J. Solid State Chemistry, 181, 1565 (2008) https://doi.org/10.1016/j.jssc.2008.04.020
  9. S. D. McAllister, R. Ponraj, I. F. Chenga, and D. B. Edwards, J. Power Sources, 173, 882 (2007) https://doi.org/10.1016/j.jpowsour.2007.08.033
  10. K. Pimraksa and P. Chindaprasirt, Ceramics International, 35, 471 (2009) https://doi.org/10.1016/j.ceramint.2008.01.013
  11. N. George, J. Faoagali, and M. Muller, Burns, 23, 493 (1997) https://doi.org/10.1016/S0305-4179(97)00047-8
  12. T. N. Kim, Q. L. Feng, J. O. Kim, J. Wu, H. Wang, G. C. Chen, and F. Z. Cui, J. Mater. Sci. Mater. Med., 9, 129 (1998) https://doi.org/10.1023/A:1008811501734
  13. J. B Wright, K. Lam, D. Hansen, and R. E. Burrell, Am. J. Infect Control, 27, 344 (1999) https://doi.org/10.1016/S0196-6553(99)70055-6
  14. B. Illingworth, R. W. Bianco, and S. Weisberg, J. Heart Valve Dis., 9, 135 (2000)
  15. L. Suber, I. Sondi, E. Matijevi\acute{c}, and D. V. Goia, J. Colloid Interface Sci., 288, 489 (2005) https://doi.org/10.1016/j.jcis.2005.03.017
  16. C. J. Lee, D. Y. Kim, and B. S. Kim, J. Korean Ind. Eng. Chem., 18, 396 (2007)