효율적인 연속 충돌감지를 위한 프리즘 기반의 메쉬 컬링 기법

Prism-based Mesh Culling Method for Effective Continuous Collision Detection

  • 우병광 (서울벤처정보대학원대학교 컴퓨터응용기술학과) ;
  • 유효선 (서울벤처정보대학원대학교 VCAR 연구실) ;
  • 최유주 (서울벤처정보대학원대학교 컴퓨터응용기술학과)
  • Woo, Byung-Kwang (Dept. of Compute Science and Application, Seoul University of Venture and Information) ;
  • You, Hyo-Sun (VCAR Lab., Seoul University of Venture and Information) ;
  • Choi, Yoo-Joo (Dept. of Compute Science and Application, Seoul University of Venture and Information)
  • 발행 : 2009.12.01

초록

본 연구에서는 다각형 메쉬 모델들에 대한 시뮬레이션 수행시 주요 병목현상으로 제기되는 충돌감지의 효율성을 높이기 위하여, 연속 시간사이에서 이산시간 스위프트로 형성된 프리즘을 단위로 하는 효율적 메쉬 컬링 기법을 제안한다. 제안 기법에서는 우선, 연속 시간사이에서 대응되는 두 삼각형을 이용하여 프리즘을 정의하고, 프리즘 단위의 폐쇄검사(Occlusion Query) 기반 가시성 테스트(Visibility Test)를 실시하여, 교차 가능성이 없는 프리즘을 세부 충돌테스트의 대상에서 제외시킨다. 또한, 가시성 테스트 결과로 추출된 프리즘의 충돌가능 집합(PCS: Potential Colliding Set)에서 충돌 가능성이 없는 프리즘의 쌍들을 분리축 테스트(SAT: Separating Axis Test)을 기반으로 분류하는 협대역 컬링(Narrow Band Culling)을 수행한다. 분리축 테스트 시, 두 프리즘의 영역을 각각의 반공간(Half Space)에 포함시키는 평면을 정의하고 이에 수직인 주축을 정의하여, 단일 주축에 대한 분리 검사를 수행함으로써 수행 효율성을 높인다. 제안기법의 성능을 평가하기 위하여 서로 다른 크기의 벤치마크 모델을 선정하고, 제안 기법 적용 전후의 세부 층돌검사 대상 프리즘 쌍의 수를 비교하였다. 또한, 단일 주축에 대한 분리축 테스트 기반 컬링의 효율성을 입증하기 위하여, 프리즘 쌍에 대한 가시성테스트 실험 결과와 비교하였다. 2916개와 2731개의 삼각형으로 구성된 두 메쉬모델에 대한 컬링 실험에서, 제안 컬링기법 적용시 99%의 효과적인 컬링결과를 얻었다.

In this paper, we present a prism-based mesh culling method to improve effectiveness of continuous collision detection which is a major bottleneck in a simulation using polygonal mesh models. A prism is defined based on two matching triangles between a sequence of times m a polygonal model. In order to detect potential colliding set(PCS) of prism between two polygonal models in a unit time, we apply the visibility test based on the occlusion query to two sets of prisms which are defined from two polygonal models in a unit time. Moreover, we execute the narrow band culling based on SAT(Separating Axis Test) to define potential colliding prism pairs from PCS of prisms extracted as a result of the visibility test. In the SAT, we examine one axis to be perpendicular to a plane which divides a 3D space into two half spaces to include each prism. In the experiments, we applied the proposed culling method to pairs of polygonal models with the different size and compared the number of potential colliding prism pairs with the number of all possible prism pairs of two polygonal models. We also compared effectiveness and performance of the visibility test-based method with those of the SAT-based method as the second narrow band culling. In an experiment using two models to consist of 2916 and 2731 polygons, respectively, we got potential colliding prism pairs with 99 % of culling rate.

키워드

참고문헌

  1. Yoo-Joo Choi, Young J. Kim and Myung-Hee Kim, "self-CD Interactive Self-collision Detection for Deformable Body Simulation Using GPUs," AsiaSim, pp. 187-196, 2005.
  2. Gottschalk, S., Un, M. C., and Manocha, D. "OBBTree: A hierarchical structure for rapid interference detection," In Proc. of SIGGRAPH, pp. 171-180, 1996.
  3. Redon, S., Kim, Y. J., Un, M. C., and Manocha, D., "Interactive and continuous collision detection for avatars in virtual environments," In Proc. of IEEE Virtual Reality; 2004.
  4. Larsson T. and Akenine-M"oller T., "A dynamic bounding volume hierarchy for generalized collision detection," Computers and Graphics, vol. 30, no. 3, pp. 451-460, 2006.
  5. Min Tang and Young J. Kim and Dinesh Manocha, "C2A: Controlled Conservative Advancement for Continuous Collision Detection of Polygonal Models," In Proc. of International Conference on Robotics and Automation japan 2009.
  6. Mirtich, B. V., "Impulse-based Dynamic Simulation of Rigid Body Systems," PhD thesis, University of California, Berkeley, 1996.
  7. Barequet G., and Har-Peled S., "Efficiently approximating the minimum-volume bounding box of a point set in three dimensions," J Algorithms 38, pp. 91-109, 2001. https://doi.org/10.1006/jagm.2000.1127
  8. Teschner, M., Kimmere, S., Heidelberger, B., Zachmann, G., Raghupathi, L., Fuhrmann, A., Cani, M.-P., Faure, F., Magnenat-Thalmann, N., Strasser, W., and Volino, P., "Collision detection for deformable objects," Computer Graphics Forum 19. pp. 61-81, 2005.
  9. Ehmann S., and Lin M. C. "Accelerated proximity queries between convex polyhedra using multi-level Voronoi marching," In Proc. of IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2101-2106, 2000.
  10. Ehmann, S., and Lin, M. C., "Accurate and fast proximity queries between polyhedra using convex surface decomposition," Computer Graphics Forum (In Proc. of Eurographics 2001) vol. 20, no. 3, pp. 500-510, 2001 https://doi.org/10.1111/1467-8659.00543
  11. Redon, S., Keddar, A., and Coquillart, S., "An algebraic solution to the problem of collision detection for rigid polyhedral objects," In Proc. of IEEE Conference on Robotics and Automation", 2000.
  12. Abdel-Malek, K., Blackmore, D., and JOY, K. "Swept volumes: foundations, perspectives, and applications," International journal of Shape Modeling, 2000.
  13. Schwarzer, F., Saha, M., and Latombe, J.-C., "Exact collision checking of robot paths," In Workshop on Algorithmic Foundations of Robotics (WAFR), 2002.
  14. Zhang. X. Y., Lee, M. K., and KIM, Y. J., "Interactive continuous collision detection for rigid non-convex: polyhedra," The Visual Computer (In Proc. of Pacific Graphics 2006) 22, pp. 9-11, 2006.
  15. Zhang. X. Y., Stephane Redon, Lee, M. K., and KIM, Y. J., "Continuous collision detection for articulated models using Taylor models and temporal culling." AGM Transactions on Graphics (TOG), vol. 26, no. 3, 2007.
  16. N.K. Govindaraju, M. C. Lin and D. Manocha, "Fast self-collision culling in general environment using graphics processors," In Technical Report TR03-044 of University of North Carolina at Chapel Hill, 2003.
  17. Min Tang, Sean Curtis, Sung-Eui Yoon, and Dinesh Manocha, "Interactive Continuous Collision Detection between Deformable Models using Connectivity-Based Culling," ACM Symp. on Solid and Physical Modeling, pp. 25-36, 2008.