DOI QR코드

DOI QR Code

Purification and Characterization of Phocaecin PI80: An Anti-Listerial Bacteriocin Produced by Streptococcus phocae PI80 Isolated from the Gut of Peneaus indicus (Indian White Shrimp)

  • Satish Kumar, Ramraj (Department of Biotechnology, School of Life Sciences, Pondicherry University) ;
  • Arul, Venkatesan (Department of Biotechnology, School of Life Sciences, Pondicherry University)
  • Published : 2009.11.30

Abstract

A bacteriocin-producing strain PI80 was isolated from the gut of Penaeus indicus (Indian white shrimp) and identified as Streptococcus phocae PI80. The bacteriocin was purified from a culture supernatant to homogeneity as confirmed by Tricine SDS-PAGE. Reverse-phase HPLC analysis revealed a single active fraction eluted at 12.94 min, and MALDI-TOF mass spectrometry analysis showed the molecular mass to be 9.244 kDa. This molecular mass does not correspond to previously described streptococcal bacteriocins. The purified bacteriocin was named phocaecin PI80 from its producer strain, as this is the first report of bacteriocin production by Streptococcus phocae. The bacteriocin exhibited a broad spectrum of activity and inhibited important pathogens: Listeria monocytogenes, Vibrio parahaemolyticus, and V. fischeri. The antibacterial substance was also sensitive to proteolytic enzymes: trypsin, protease, pepsin, and chymotrypsin, yet insensitive to catalase, peroxidase, and diastase, confirming that the inhibition was due to a proteinaceous molecule (i.e., the bacteriocin), and not due to hydrogen peroxide or diacetyl. Phocaecin PI80 moderately tolerated heat treatment (up to $70^{\circ}C$ for 10 min) and resisted certain solvents (acetone, ethanol, and butanol). A massive leakage of $K^+$ ions from E. coli $DH5\alpha$, L. monocytogenes, and V. parahaemolyticus was induced by phocaecin PI80, as measured by Inductively Coupled Plasma Optical Emission Spectrometry (ICPOES). Therefore, the results of this study show that phocaecin PI80 may be a useful tool for inhibiting L. monocytogenes in seafood products that do not usually undergo adequate heat treatment, whereas the cells of Streptococcus phocae PI80 could be used to control vibriosis in shrimp farming.

Keywords

References

  1. Abee, T., T. R. Klaenhammer, and L. Letellier. 1994. Kinetic studies of the action of lactacin F, a bacteriocin produced by Lactobacillus johnsonii that forms poration complexes in the cytoplasmic membrane. Appl. Environ. Microbiol. 60: 1006-1013
  2. Amer, A. E. 2007. Characterization of a bacteriocin-like inhibitory substance produced by Lactobacillus plantarum isolated from Egyptian home made yoghurt. Science Asia 33: 313-319 https://doi.org/10.2306/scienceasia1513-1874.2007.33.313
  3. Beatriz, G., G. Erwin, R. S. Edmund, J. M. Arnold, E. S. Juan, and N. K. WiL 1996. Bactericidal mode of action of plantaricin C. Appl. Environ. Microbiol. 62: 2701-2709
  4. Castellano, P., R. Raya, and G. Vignolo. 2003. Mode of action of lactocin 705, a two-component bacteriocin from Lactobacillus casei CRL705. Int. J. Food Microbiol. 85: 35-43 https://doi.org/10.1016/S0168-1605(02)00479-8
  5. Cleveland, J., T. J. Montville, I. F. Nes, and M. L. Chikindas. 2001. Bacteriocins: Safe, natural antimicrobials for food preservation. Int. J. Food Microbiol. 71: 1-20 https://doi.org/10.1016/S0168-1605(01)00560-8
  6. Davies, E. A., H. E. Bevis, and B. J. Delves. 1997. The use of the bacteriocin nisin, as a preservative in ricotta-type cheese to control the food-borne Listeria monocytogenes. Lett. Appl. Microbiol. 24: 343-346 https://doi.org/10.1046/j.1472-765X.1997.00145.x
  7. Farber, J. M. and P. I. Peterkin, 1991. Listeria monocytogenes, a foodbome pathogen. Microbiol. Rev. 55: 476-511
  8. Gahan, C. G. and J. K. Collins. 1991. Listeriosis: Biology and implication lor the food industry. Trends Food Sci. Tech. 2: 89-93 https://doi.org/10.1016/0924-2244(91)90635-V
  9. Gibello, A., A. I. Mata, M. M. Blanco, A. Casamayor, L. Dominguez, and F. Jose Fernandez-Garaysabal. 2005. First identification of Streptococcus phocae isolated from Atlantic salmon (Salmo-Salar), J. Clin. Microbiol. 43: 526-527 https://doi.org/10.1128/JCM.43.1.526-527.2005
  10. Gill, C. O. and M. P. Reichel. 1989. Growth of the cold-tolerant pathogens Yersinia enterocolitica, Aeromonas hydrophila and Listeriamonocytogenes on high-pH beef packaged under vacuum or carbon dioxide. J. Food Microbiol. 6: 223-230 https://doi.org/10.1016/S0740-0020(89)80003-6
  11. Ghrairi, T., M. Frere, J. M. Berjeaud, and M. Manai. 2005. Lactococcin MMT24, a novel two-peptide bacteriocin produced by Lactococcus lactis isolated from rigouta cheese. Int. J. Food Microbiol. 105: 389-398 https://doi.org/10.1016/j.ijfoodmicro.2005.04.019
  12. Gopalakannan, A. 2006. Studies on the control of Aeromonas hydrophila infection in Cyprinus carpio and Tzlapia mossambicus by immunostimulants and probiotics. PhD Thesis. Pondicherry University, Pondicherry, India
  13. Henton, M. M., O. Zapke, and P. A. Basson. 1999. Streptococcus phocae infections associated with starvation in cape fur seals. J. S. Aft Vet. Assoc. 70: 98-99
  14. Hun, J. L., J. J. Yun, S. P. Chan, H. K. Seung, I. H. Kyeong, S. A. Jong, and I. M. Tae. 1999. Purification and characterization of a bacteriocin produced by Lactococcus lactis subsp. lactis H559 isolated from kimchi. J. Biosci. Bioeng. 88: 153-159 https://doi.org/10.1016/S1389-1723(99)80194-7
  15. Ingolf, F. S., B. D. Dzung, and H. Holo. 2007. Bacteriocin diversity in Streptococcus and Enterococcus. J. Bacteriol. 189: 1189-1198 https://doi.org/10.1128/JB.01254-06
  16. Ivanova, I., V. Miteva, T. S. Stefanova, A. Pantev, I. Budakov, S. Danova, et al. 1998. Characterization of a bacteriocin produced by Streptococcus thermophilus 81. Int. J. Food Microbiol. 42: 147-158 https://doi.org/10.1016/S0168-1605(98)00067-1
  17. Kawai, Y., T. Saito, M. Suzuki, and T. Itoh. 1998. Sequence analysis by cloning of the structural gene of gassericin A, a hydrophobic bacteriocin produced by Lactobacillus gasseri LA 39. Biosci. Biotechnol. Biochem. 62: 887-892 https://doi.org/10.1271/bbb.62.887
  18. Klaenhammer, T. R. 1993. Genetics ofbacteriocins produced by lactic acid bacteria. FEMS Microbiol. Rev. 12: 39-85
  19. Mantovani, H. C., H. Hu, R. W. Worobo, and J. B. Russell. 2002. Bovicin HC5, a bacteriocin from Streptococcus bovis HC5. Microbiology 148: 3347-3352
  20. Marciset, O., J. M. C. Stratingh, B. Mollet, and B. Poolman, 1997. Thermophilin 13, a nontypical antilisterial poration complex bacteriocin, that functions without a receptor. J. Biol. Chem. 272: 14277-14284 https://doi.org/10.1074/jbc.272.22.14277
  21. Mathot, A. G., E. Beliard, and D. Thuault. 2003. Streptococcus thermophilus 580 produces a bacteriocin potentially suitable for inhibition of Clostridium tyrobutyricum in hard cheese. J. Dairy Sci. 86: 3068-3074 https://doi.org/10.3168/jds.S0022-0302(03)73906-X
  22. McAuliffe, O., M. P. Ryan, R. P. Ross, C. Hill, P. Breeuwer, and T. Abee. 1998. Lacticin 3147, a broad-spectrum bacteriocin which selectively dissipates the membrane potential. Appl. Environ. Microbiol. 64: 439-445
  23. Mindich, L. 1966. Bacteriocins of Diplococcus pneumoniae. I. Antagonistic relationships and genetic transformations, J. Bacteriol. 92: 1090-1098
  24. Morrissey, J.H. 1981. Silver staining for proteins in polyacrylamide gels: A modified procedure with enhanced uniform sensitivity. Anal. Biochem. 117: 307-310 https://doi.org/10.1016/0003-2697(81)90783-1
  25. Nes, I. F. and H. Holo. 2000. Class II antimicrobial peptides from lactic acid bacteria. Biopolymers 55: 50-61 https://doi.org/10.1002/1097-0282(2000)55:1<50::AID-BIP50>3.0.CO;2-3
  26. O'Sullivan, L., R. P. Ross, and C. Hill. 2002. Potential of bacteriocin-producing lactic acid bacteria for improvements in food safety and quality. Biochimie 84: 593-604 https://doi.org/10.1016/S0300-9084(02)01457-8
  27. Piard, J. C., P. M. Muriana, M. J. Desmazeaud, and T. R. Klaenhammer, 1992. Purification and partial characterization of lacticin 481, a lanthionine-containing bacteriocin produced by Lactobacillus lactis subsp. lactis CNRZ 481. Appl. Environ. Microbiol. 58: 279-284
  28. Sablon, E., B. Contreras, and E. J. Vandarnme, 2000. Antimicrobial peptides of lactic acid bacteria: Mode of action, genetics and biosynthesis. Adv. Biochem. Eng. Biotechnol. 68: 21-60 https://doi.org/10.1007/3-540-45564-7_2
  29. Sandip, M. S., C. Singh, and V. And. 2009. Inhibitory activity of Streptococcus phocae PI80 and Enterococcus faecium MC13 against vibriosis in shrimp Penaeusmonodon. World J. Microbiol. Biotech. 25: 697-703 https://doi.org/10.1007/s11274-008-9939-4
  30. Schillinger, V. and F. K. Lucke. 1989. Antimicrobial activity of Lactobacillus sake isolated from meat. Appl. Environ. Microbiol. 39: 189-195
  31. Schagger, H. and V. G. Jagow. 1987. Tricine-sodium dodecyl sulphate polyacrilamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal. Biochem. 166: 368-379 https://doi.org/10.1016/0003-2697(87)90587-2
  32. Simpson, W. J. and J. R. Tagg. 1983. M-Type 57 group A Streptococcus bacteriocin. Can. J. Microbiol. 29: 1445-1451 https://doi.org/10.1139/m83-221
  33. Skaar, I., P. Gaustad, T. Tonjum, B. Holm, and H. Stenwig. 1994. Streptococcus phocae sp. nov., a new species isolated from clinical specimens from seals. Int. J. Syst. Bacteriol. 44: 646-650 https://doi.org/10.1099/00207713-44-4-646
  34. Stefanie, E. G. and A. S. George. 2005. Thermophilin 110: A bacteriocin of Streptococcus thermophilus ST110. Curr. Microbiol. 51: 175-182 https://doi.org/10.1007/s00284-005-4540-7
  35. Svetoslav, G. D. 2007. A novel bacteriocin-like substance produced by Enterococcus faecium 3587. Curr. Microbiol. 55: 323-327 https://doi.org/10.1007/s00284-007-0018-0
  36. Tadashi, I., I. Takefumi, M. Hirasawa, C. Watanbe, R. M. Jerry, and T. Shiota. 1982. Purification and certain properties of bacteriocin from Streptococcus mutans. Infect. Immun. 35: 861-868
  37. Tahiri, I., M. Desbiens, R. Benech, E. Kheadr, C. Lacroix, S. Thibault, D. Ouellette, and I. Fliss. 2004. Purification, characterization and amino acid sequencing of divergicin M35: A novel class IIa bacteriocin produced by Carnobacterium divergens M35. Int. J. Food Microbiol. 97: 123-136 https://doi.org/10.1016/j.ijfoodmicro.2004.04.013
  38. Thomas, L. V. and J. W. Wimpenny. 1996. Investigation of the effect of combined variations in temperature, pH, and NaCl concentration on nisin inhibition of Listeria monocytogenes and Staphylococcus aureus. Appl. Environ. Microbiob. 62: 2006-2012
  39. Tiwari, S. K. and S. Srivastava. 2008. Purification and characterization of plantaricin LR14: A novel bacteriocin produced by Lactobacillus plantarum LR/I4. Appl. Microbiol. Biotechnol. 79: 759-767 https://doi.org/10.1007/s00253-008-1482-6
  40. Villani, F., O. Pepe, G. Mauriello, G. Salzano, G. Moschetti, and S. Coppola. 1995. Antilisterial activity of thermophilin 347, a bacteriocin produced by Streptococcus thermophilus. Int. J. Food Microbiol. 25: 179-190 https://doi.org/10.1016/0168-1605(94)00153-W
  41. Vossen, A., A. Abdulrnawjood, C. Larnmler, R. Wein, and U. Siebert. 2004. Identification and molecular characterization of beta-hemolytic streptococci isolated from harbor seals (Phoca vitulina) and grey seals (Halichoerus grypus) of the German North and Baltic Seas. J. Clin. Microbiol. 42: 469-473 https://doi.org/10.1128/JCM.42.1.469-473.2004
  42. Wong, H. K. 1981. Bacteriocin-like inhibitors of group A streptococci produced by group F and group G streptococci. Proc. Univ. Otago Med Sch. 59: 105-106

Cited by

  1. Purification and characterization of enterocin MC13 produced by a potential aquaculture probiontEnterococcus faeciumMC13 isolated from the gut ofMugil cephalus vol.57, pp.12, 2011, https://doi.org/10.1139/w11-092
  2. Inhibitory activity of probiotic Enterococcus faecium MC13 against Aeromonas hydrophila confers protection against hemorrhagic septicemia in common carp Cyprinus carpio vol.19, pp.5, 2009, https://doi.org/10.1007/s10499-011-9415-2
  3. 김치에서 분리한 Lactococcus lactis가 생산하는 박테리오신의 정제 및 특성 vol.25, pp.2, 2009, https://doi.org/10.5352/jls.2015.25.2.180
  4. First isolation of Streptococcus halichoeri and Streptococcus phocae from a Steller sea lion (Eumetopias jubatus) in South Korea vol.52, pp.1, 2009, https://doi.org/10.7589/2015-05-112
  5. Bacteriocins and their applications for the treatment of bacterial diseases in aquaculture: a review vol.47, pp.4, 2009, https://doi.org/10.1111/are.12556
  6. Purification and antibacterial mechanism of fish-borne bacteriocin and its application in shrimp (Penaeus vannamei) for inhibiting Vibrio parahaemolyticus vol.33, pp.8, 2009, https://doi.org/10.1007/s11274-017-2320-8
  7. Lactic Acid Bacteria in Finfish—An Update vol.9, pp.None, 2009, https://doi.org/10.3389/fmicb.2018.01818
  8. Host-Associated Probiotics: A Key Factor in Sustainable Aquaculture vol.28, pp.1, 2009, https://doi.org/10.1080/23308249.2019.1643288
  9. Probiotics and competitive exclusion of pathogens in shrimp aquaculture vol.13, pp.1, 2021, https://doi.org/10.1111/raq.12477
  10. Streptococcal Infections in Marine Mammals vol.9, pp.2, 2009, https://doi.org/10.3390/microorganisms9020350