DOI QR코드

DOI QR Code

Statistical Optimization for Improved Production of Cyclosporin A in Solid-State Fermentation

  • Survase, Shrikant A. (Food Engineering and Technology Department, Institute of Chemical Technology, University of Mumbai) ;
  • Annapure, Uday S. (Food Engineering and Technology Department, Institute of Chemical Technology, University of Mumbai) ;
  • Singhal, Rekha S. (Food Engineering and Technology Department, Institute of Chemical Technology, University of Mumbai)
  • Published : 2009.11.30

Abstract

This work evaluates the effect of different amino acids on production of Cyclosporin (CyA) production in solid-state fermentation that was previously optimized for different fermentation parameters by one factor at-a-time for the maximum production of CyA by Tolypocladium inflatum MTCC557. Based on the Plackett-Burman design, glycerol, ammonium sulfate, $FeCl_3$, and inoculum size were selected for further optimization by response surface methodology (RSM). After identifying effective nutrients, RSM was used to develop mathematical model equations, study responses, and establish the optimum concentrations of the key nutrients for higher CyA production. It was observed that supplementation of medium containing (% w/w) glycerol, 1.53; ammonium sulfate, 0.95; $FeCl_3$, 0.18; and inoculum size 6.4 ml/5g yielded a maximum of 7,106 mg/kg as compared with 6,480 mg CyA/kg substrate using one factor at-a-time. In the second step, the effect of amino acids on the production of CyA was studied. Addition of $_L$-valine and $_L$-leucine in combination after 20 h of fermentation resulted in maximum production of 8,166 mg/kg.

Keywords

References

  1. Abdel-fattah, Y. R., H. El Enshasy, M. Anwar, H. Omar, E. Abolmagd, and R. A. Zahra, 2007. Application of factorial experimental designs for optimization of cyclosporin A production by Tolypocladium iriflatum in submerged culture. J. Microbiol. Biotechnol. 17: 1930-1936
  2. Agathos, S. N., J. W. Marshall, C. Maraiti, R. Parekh, and C. Moshosing. 1986. Physiological and genetic factors for process development of cyclosporin A fermentation. J. Ind Microbiol. 1: 39-48 https://doi.org/10.1007/BF01569415
  3. Balakrishnan, K. and A. Pandey. 1996. Influence of amino acids on the biosynthesis of cyclosporin A by Tolypocladium inflatum. Appl. Microbiol. Biotechnol. 45: 800-803 https://doi.org/10.1007/s002530050765
  4. Blix, G. 1948. Determination of chexosamines according to Elson & Margan. Acta Chem. Scand. 2: 467-473 https://doi.org/10.3891/acta.chem.scand.02-0467
  5. Bussari, B., P. S. Saudagar, N. S. Shaligram, S. A. Survase, and R. S. Singhal. 2008. Production of cephamycin C by Streptomyces clavuligerus NT4 using solid-state fermentation. J. Ind. Microbiol. Biotechnol. 35: 49-58 https://doi.org/10.1007/s10295-007-0265-x
  6. Dreyfuss, M., E. Hami, H. Hoffman, H. Kobel, W. Pache, and H. Tscherta. 1976. Cyclosporin-A and C, new metabolites from Trichoderma polysporum (link express) Rifia. Eur. J. Appl. Microbiol. 45: 1223-1228
  7. Haavik, H. I. and B. Vessia, 1978. Bacitracin fermentation by Bacillus lichenformis. Acta Path. Microbiol. Scand. B 86: 67-70
  8. Holkar, U., M. Hofer, and J. Lenz. 2004. Biotechnological advantages of laboratory scale solid state fermentation with fungi. Appl. Microbiol. Biotechnol. 64: 175-186 https://doi.org/10.1007/s00253-003-1504-3
  9. Isaac, C. C., A. Jones, and M. A. Pickard. 1990. Production of cyclosporm A by Tolypocladium niveum strains. Antimicrob. Agents Chemother. 34:121-127 https://doi.org/10.1128/AAC.34.1.121
  10. Kahan, B. D. (ed) 1984. Cyclosporin: Biological Activity and ClinicalApplications. Crune & Straton Inc., Orlando
  11. Kobel, H. and R. Traber. 1982. Directed biosynthesis of cyc1osporins. Eur. J. Appl. Microbiol. Biotechnol. 14: 237-240 https://doi.org/10.1007/BF00498470
  12. Kumar, P. and T. Satyanarayana. 2007. Optimization of culture variables tor improving glucoamylase production by alginate-entrapped Thermomucor indicae-seudaticae using statistical methods. Bioresour. Technol. 98: 1252-1259 https://doi.org/10.1016/j.biortech.2006.05.019
  13. Lee, J. and S. Agathos. 1989. Effect of amino acids on the production of cyclosporin A by T. irflatum. Biotechnol. Lett. 2: 77-82
  14. Levin, L.,F. Forchiassin, and A. Viale. 2005. Ligninolytic enzyme production and dye decolorization by Trametes trogii: Application of the Plackett-Burman experimental design to evaluate nutritional requirements. Process Biochem. 40: 1381-1387 https://doi.org/10.1016/j.procbio.2004.06.005
  15. Niladevi, K. N., R K. Sukumaran, and P. Prema. 2007. Utilization of rice straw for laccase production by Streptomyces psammoticus in solid state fermentation. J. Ind. Microbiol. Biotechnol. 34: 665-674 https://doi.org/10.1007/s10295-007-0239-z
  16. Nisha, A. K., S. Meignanalakshmi, and K. Ramasarny. 2008. Comparative effect of amino acids in theproduction of cyclosporin A by solid and submerged fermentations. Biotechnology 7: 205-208 https://doi.org/10.3923/biotech.2008.205.208
  17. Plackett, R L.. and J. P. Burman. 1944. The design of optimum multifactorial experiments. Biometrica 33: 305-325 https://doi.org/10.1093/biomet/33.4.305
  18. Rahacek, Z. and Z. De-Xiu. 1991. The biochemistry of cyclosporin formation - a review. Process Biochem. 26:157-166 https://doi.org/10.1016/0032-9592(91)80012-E
  19. Ramana Murthy, M. V., E. V. S. Mohan, and A. K. Sadhukhan. 1999. Cyclosporin A production by Tolypocladium injlatum using solid state fermentation. Process Biochem. 34: 269-280 https://doi.org/10.1016/S0032-9592(98)00095-8
  20. Sakurai, Y., T. H. Zee, and H. Shiota. 1977. One of the convenient methods for glucosamine estimation in Koji. Agric. Biol. Chem. 41: 619-624 https://doi.org/10.1271/bbb1961.41.619
  21. Sallam, L.. A. R., A. H. El-Refai, A. A. Hamdi, A. H. El-Minofi, and S. I. Abd-Elsalam. 2003. Role of some fermentation parameters on cyclosporin A production by a new isolate of A. terreus. J. Gen. Appl. Microbiol. 49: 321-328 https://doi.org/10.2323/jgam.49.321
  22. Sekar, C. and K. Balaraman. 1998. Optimization studies on the production of cyclosporin A by solid state fermentation. Bioprocess Eng. 18: 293-296 https://doi.org/10.1007/s004490050444
  23. Sekar, C., V. W. Rajasekar, and K. Balaraman. 1997. Production of cyclosporin A by solid state fermentation, Bioprocess Eng. 17: 257-259 https://doi.org/10.1007/s004490050383
  24. Schindler, R. (ed) 1985. Cyclosporin in Autoimmune Diseases. Springer-Verlag, Berlin
  25. Stiller, C. R. and G. Opelz, 1991. Should cyclosporin be continued indefinitely? Transplant Proc. 23: 36-40
  26. Survase, S. A., N. S., Shaligram, R. C., Pansuriya, U. S., Annapure, and R. S. Singhal. 2009. A novel medium for the enhanced production of cyclosporin A by Tolypocladium irflatum MTCC 557 using solid state fermentation. J. Microbiol. Biotechnol. 19: 462-467 https://doi.org/10.4014/jmb.0805.324
  27. Weiser, J. and V. Matha. 1988. The insecticidal activity of cyclosporin-A on mosquito larvae. J. Invert. Pathol. 51: 92-93 https://doi.org/10.1016/0022-2011(88)90092-4
  28. Zocher, R., N. Madry, H. Peeters, and H. Kleinkauf 1984. Biosynthesis of cyclosporin A. Phytochemistry 23: 549-551 https://doi.org/10.1016/S0031-9422(00)80378-7

Cited by

  1. Cyclosporin A - A review on fermentative production, downstream processing and pharmacological applications vol.29, pp.4, 2009, https://doi.org/10.1016/j.biotechadv.2011.03.004
  2. The Influence of Chemical Mutagenesis on the Properties of the Cyclosporine a High-Producer Strain Tolypocladium inflatum VKM F-3630D vol.54, pp.1, 2009, https://doi.org/10.1134/s0003683818010027