Hydrothermal Acid Pretreatment of Chlamydomonas reinhardtii Biomass for Ethanol Production

  • Nguyen, Minh Thu (Department of Chemical Engineering, Sungkyunkwan University) ;
  • Choi, Seung-Phill (Department of Chemical Engineering, Sungkyunkwan University) ;
  • Lee, Jin-Won (Department of Chemical and Biomolecular Engineering, Sogang University) ;
  • Lee, Jae-Hwa (Department of Pharmaceutical Engineering, Silla University) ;
  • Sim, Sang-Jun (Department of Chemical Engineering, Sungkyunkwan University)
  • Published : 2009.02.28

Abstract

Certain microalgae have been known to use light and various carbon sources to produce carbohydrates, mainly in the form of starch. This is one of the pertinent feedstocks replacing agricultural products for the production of bioethanol by yeast. This study focuses upon dilute acid hydrothermal pretreatments at low cost and high efficiency to compete with current methods, and employs Chlamydomonas reinhardtii UTEX 90 as the feedstock. With dry cells of 5%(w/v), the algal biomass was pretreated with sulfuric acid(1-5%) under temperatures from 100 to $120^{\circ}C$, from 15 to 120 min. As a result, the glucose release from the biomass was maximum at 58%(w/w) after pretreatment with 3% sulfuric acid at $110^{\circ}C$ for 30 min. This method enabled not only starch, but also the hydrolysis of other oligosaccharides in the algal cell in high efficiency. Arrhenius-type of model equation enabled extrapolation of some yields of glucose beyond this range. The pretreated slurry was fermented by yeast, Saccharomyces cerevisiae S288C, resulting in an ethanol yield of 29.2% from algal biomass. This study suggests that the pretreated algal biomass is a suitable feedstock for ethanol production and can have a positive impact on large-scale applied systems.

Keywords

References

  1. Azhar, A. and M. K. Hamdy. 1980. Alcohol fermentation of sweet potato. I. Acid hydrolysis and factors involved. J. Biotechnol. Bioeng. 23: 879-886
  2. Ball, S. G., L. Drick, A. Decq, J. C. Martiat, and R. F. Matagne. 1990. Physiology of starch storage in the monocellular alga Chlamydomonas reinhardtii. Plant Sci. 66: 1-9 https://doi.org/10.1016/0168-9452(90)90162-H
  3. Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Anal. Biochem. 72: 248-254 https://doi.org/10.1016/0003-2697(76)90527-3
  4. Chandel, A. K., E. S. Chan, R. Rudravaram, M. L. Narasu, L. V. Rao, and P. Ravindra. 2007. Economics and environmental impact of bioethanol production technologies: An appraisal. Biotechnol. Mol. Biol. Rev. 2: 014-032
  5. Chum, H. L., D. K. Johnson, S. K. Black, and R. P. Overend. 1990. Pretreatment-catalyst effects and the combined severity parameter. Appl. Biochem. Biotechnol. 24: 1-14 https://doi.org/10.1007/BF02920229
  6. Del Campo, I., I. Algeria, M. Zazpe, M. Echeverria, and I. Echeverria. 2006. Diluted acid hydrolysis pretreatment of agri-food wastes for bioethanol production. Ind. Crop Prod. 24: 214-221 https://doi.org/10.1016/j.indcrop.2006.06.014
  7. Fontana, J. D., D. A. Mitchell, O. E. Molina, A. Gaitan, T. M. B. Bonfim, J. Adelmann, A. Grzybowski, and M. Passos. 2008. Starch depolymerization with diluted phosphoric acid. Food Technol. Biotechnol. 46: 305-310
  8. Harris, E. H. 1989. The Chlamydomonas Sourcebook, pp. 607- 608. Academic Press, Inc., San Diego, California, U.S.A
  9. Hirano, A., R. Ueda, S. Hirayama, and Y. Ogushi. 1997. CO2 fixation and ethanol production with microalgal photosynthesis and intracellular anaerobic fermentation. Energy 22: 137-142 https://doi.org/10.1016/S0360-5442(96)00123-5
  10. Hirokawa, T., M. Hata, and H. Taketa. 1982. Correlation between the starch level and the rate of starch synthesis during the development cycle of Chlorella ellipsoidea. Plant Cell Physiol. 23: 813-820
  11. Jiang, K. S. and G. A. Barber. 1975. Polysaccharide from cell walls of Chlamydomonas reinhardtii. Phytochemistry 14: 2459-2461 https://doi.org/10.1016/0031-9422(75)80365-7
  12. Kim, J. P., C. D. Kang, S. J. Sim, M. S. Kim, T. H. Park, D. H. Lee, et al. 2005. Cell agal optimization for hydrogen production induced by sulfur deprivation using a green alga Chlamydomonas reinhardtii UTEX 90. J. Microbiol. Biotechnol. 15: 131-135
  13. Melis, A. 2007. Photosynthetic H2 metabolism in Chlamydomonas reinhardtii. Planta 226: 1075-1086 https://doi.org/10.1007/s00425-007-0609-9
  14. Mustafa B., H. Balat, and C. Oz. 2007. Progress in bioethanol processing. Prog. Energy Combust. Sci. 34: 551-573 https://doi.org/10.1016/j.pecs.2007.11.001
  15. Overend, R. P. and E. Chornet. 1987. Fractionation of lignocellulosics by steam-aqueous pretreatments. Phil. Trans. R. Soc. Lond. Ser. 321: 523-536 https://doi.org/10.1098/rsta.1987.0029
  16. Sanchez, O. J. and C. A. Cardona. 2008. Review: Trends in biotechnological production of fuel ethanol from different feedstocks. Bioresour. Technol. 99: 5270-5295 https://doi.org/10.1016/j.biortech.2007.11.013
  17. Sassner, P., C. G. Martensson, M. Balbe, and G. Zacchi. 2007. Steam pretreatment of H2SO4-impregnated Salix for the production of biotehanol. Bioresour. Technol. 99: 137-145 https://doi.org/10.1016/j.biortech.2006.11.039
  18. Shirai, F., K. Kunii, C. Sato, Y. Teramoto, E. Mizuki, S. Murao, and S. Nakayama. 1998. Cultivation of microalgae in the solution from the desalting process of soy sauce waste treatment and utilization of the algal biomass for ethanol fermentation. World J. Microb. Biotechnol. 14: 839-842 https://doi.org/10.1023/A:1008860705434
  19. Siqueira, P. F., S. G. Karp, J. C. Carvalho, W. Sturm, J. A. Rodriguez-Leon, J. L. Tholozan, R. R. Singhania, A. Pandey, and C. R. Soccol. 2008. Production of bio-ethanol from soybean molasses by Saccharomyces cerevisiae at laboratory, pilot and industrial scales. Bioresour. Technol. 99: 8156-8163 https://doi.org/10.1016/j.biortech.2008.03.037
  20. Stavis, R. L. and R. Hirschberg. 1973. Phototaxis in Chlamydomonas reinhardtii. J. Cell Biol. 59: 367-377 https://doi.org/10.1083/jcb.59.2.367
  21. Thyssen, C., R. Schlichting, and C. Giersh. 2001. The $CO_2$ concentrating mechanism in the physiological context: Lowering the $CO_2$ supply diminishes culture growth and economises starch utilization in Chlamydomonas reinhardtii. Planta 213: 629-639 https://doi.org/10.1007/s004250100534