Functional Expression of SAV3818, a Putative TetR-Family Transcriptional Regulatory Gene from Streptomyces avermitilis, Stimulates Antibiotic Production in Streptomyces Species

  • Duong, Cae Thi Phung (Department of Biological Engineering, Inha University) ;
  • Lee, Han-Na (Department of Biological Engineering, Inha University) ;
  • Choi, Si-Sun (Department of Biological Engineering, Inha University) ;
  • Lee, Sang-Yup (Department of Chemical and Biomolecular Engineering(BK21 Program), Institute for the BioCentury, Korea Advanced Institute of Science and Technology) ;
  • Kim, Eung-Soo (Department of Biological Engineering, Inha University)
  • Published : 2009.02.28

Abstract

Avermectin and its analogs are major commercial antiparasitic agents in the fields of animal health, agriculture, and human infections. Previously, comparative transcriptome analysis between the low-producer S. avermitilis ATCC31267 and the high-producer S. avermitilis ATCC31780 using a S. avermitilis whole genome chip revealed that 50 genes were overexpressed at least two-fold higher in S. avermitilis ATCC31780. To verify the biological significance of some of the transcriptomics-guided targets, five putative regulatory genes were individually cloned under the strong-and-constitutive promoter of the Streptomyces expression vector pSE34, followed by the transformation into the low-producer S. avermitilis ATCC31267. Among the putative genes tested, three regulatory genes including SAV213, SAV3818, and SAV4023 exhibited stimulatory effects on avermectin production in S. avermitilis ATCC31267. Moreover, overexpression of SAV3818 also stimulated actinorhodin production in both S. coelicolor M145 and S. lividans TK21, implying that the SAV3818, a putative TetR-family transcriptional regulator, could be a global upregulator acting in antibiotic production in Streptomyces species.

Keywords

References

  1. Albers-Schoenberg, G., B. H. Arison, J. C. Chabala, A. W. Douglas, P. Eskola, M. H. Fisher, et al. 1981. Avermectins. Structure determination. J. Am. Chem. Soc. 103: 4216-4221 https://doi.org/10.1021/ja00404a040
  2. Beck, C. F., R. Mutzel, J. Barbe, and W. Muller. 1982. A multifunctional gene (tetR) controls Tn10-encoded tetracycline resistance. J. Bacteriol. 150: 633-642
  3. Burg, R. W., B. M. Miller, E. E. Baker, J. Birnbaum, S. A. Currie, R. Hartman, et al. 1979. Avermectins, new family of potent anthelmintic agents: Producing organism and fermentation. Antimicrob. Agents Chemother. 15: 361-367
  4. Croft, S. L. 1997. The current status of antiparasite chemotherapy. Parasitology 114: 83-96
  5. Demain, A. L. 1999. Pharmaceutically active secondary metabolites of microorganisms. Appl. Microbiol. Biotechnol. 52: 455-463 https://doi.org/10.1007/s002530051546
  6. Egerton, J. R., D. A. Ostlind, L. S. Blair, C. H. Eary, D. Suhayda, S. Cifelli, R. F. Riek, and W. C. Campbell. 1979. Avermectins, new family of potent anthelmintic agents: Efficacy of the B1a component. Antimicrob. Agents Chemother. 15: 372-378
  7. Gristwood, T., P. C. Fineran, L. Everson, and G. P. C. Salmond. 2008. PigZ, a TetR/AcrR family repressor, modulates secondary metabolism via the expression of a putative four-component resistance-nodulation-cell-division efflux pump, ZrpADBC, in Serratia sp. ATCC 39006. Mol. Microbiol. 69: 418-435 https://doi.org/10.1111/j.1365-2958.2008.06291.x
  8. Grkovic, S., M. H. Brown, and R. A. Skurray. 2002. Regulation of bacterial drug export systems. Microbiol. Mol. Biol. Rev. 66: 671-701 https://doi.org/10.1128/MMBR.66.4.671-701.2002
  9. Hotson, I. K. 1982. The avermectins: A new family of antiparasitic agents. S. Afr. Vet. Assoc. 53: 87-90
  10. Hwang, Y.-S., E.-S. Kim, S. Biro, and C.-Y. Choi. 2003. Cloning and analysis of a DNA fragment stimulating avermectin production in various Streptomyces avermitilis strains. Appl. Environ. Microbiol. 69: 1263-1269 https://doi.org/10.1128/AEM.69.2.1263-1269.2003
  11. Ikeda, H., J. Ishikawa, A. Hanamoto, M. Shinose, H. Kikuchi, T. Shiba, Y. Sakaki, M. Hattori, and S. Omura. 2003. Complete genome sequence and comparative analysis of the industrial microorganism Streptomyces avermitilis. Nat. Biotech. 21: 526- 531 https://doi.org/10.1038/nbt820
  12. Ikeda, H., H. Kotaki, and S. Omura. 1987. Genetic studies of avermectin biosynthesis in Streptomyces avermitilis. J. Bacteriol. 169: 5615-5621 https://doi.org/10.1128/jb.169.12.5615-5621.1987
  13. Im, J.-H., M.-G. Kim, and E.-S. Kim. 2007. Comparative transcriptome analysis for avermectin overproduction via Streptomyces avermitilis microarray system. J. Microbiol. Biotechnol. 17: 534-538
  14. Kang, S.-H., J. Huang, H.-N. Lee, Y.-A. Hur, S. N. Cohen, and E.-S. Kim. 2007. Interspecies DNA microarray analysis identifies WblA as a pleiotropic down-regulator of antibiotic biosynthesis in Streptomyces. J. Bacteriol. 189: 4315-4319 https://doi.org/10.1128/JB.01789-06
  15. Kieser, T., M. J. Bibb, M. J. Buttner, K. F. Chater, and D. A. Hopwood. 2000. Genetic manipulation of Streptomyces. A Laboratory Manual. The John Innes Foundation, Norwich, United Kingdom
  16. Lee, J.-Y., Y.-S. Hwang, S.-S. Kim, E.-S. Kim, and C.-Y. Choi. 2000. Effect of a global regulatory gene, afsR2, from Streptomyces lividans on avermectin production in Streptomyces avermitilis. J. Biosci. Bioeng. 89: 606-608 https://doi.org/10.1016/S1389-1723(00)80065-1
  17. Lum, A. M., J. Huang, C. R. Hutchinson, and C. M. Kao. 2004. Reverse engineering of industrial pharmaceutical-producing actinomycete strains using DNA microarrays. Metab. Eng. 6: 186-196 https://doi.org/10.1016/j.ymben.2003.12.001
  18. Miller, T. W., L. Chaiet, D. J. Cole, L. J. Cole, J. E. Flor, R. T. Goegelman, et al. 1979. Avermectins, new family of potent anthelmintic agents: Isolation and chromatographic properties. Antimicrob. Agents Chemother. 15: 368-371
  19. Omura, S., H. Ikeda, J. Ishikawa, A. Hanamoto, C. Takahashi, M. Shinose, et al. 2001. Genome sequence of an industrial microorganism Streptomyces avermitilis: Deducing the ability of producing secondary metabolites. Proc. Natl. Acad. Sci. U.S.A. 98: 12215-12220 https://doi.org/10.1073/pnas.211433198
  20. Park, H.-S., S.-H. Kang, and E.-S. Kim. 2005. Doxorubicin productivity improvement by the recombinant Streptomyces peucetius with high-copy regulatory genes cultured in the optimized media composition. J. Microbiol. Biotechnol. 15: 66- 71
  21. Yoon, Y.-J., E.-S. Kim, Y.-S. Hwang, and C.-Y. Choi. 2004. Avermectin: Biochemical and molecular basis of its biosynthesis and regulation. Appl. Microbiol. Biotechnol. 63: 626-634 https://doi.org/10.1007/s00253-003-1491-4