Gene Cloning, Purification, and Characterization of a Cold-Adapted Lipase Produced by Acinetobacter baumannii BD5

  • Park, In-Hye (Department of Biotechnology, Faculty of Natural Resources and Life Science, Dong-A University) ;
  • Kim, Sun-Hee (Department of Biotechnology, Faculty of Natural Resources and Life Science, Dong-A University) ;
  • Lee, Yong-Seok (Department of Biotechnology, Faculty of Natural Resources and Life Science, Dong-A University) ;
  • Lee, Sang-Cheol (Department of Biotechnology, Faculty of Natural Resources and Life Science, Dong-A University) ;
  • Zhou, Yi (Department of Biotechnology, Faculty of Natural Resources and Life Science, Dong-A University) ;
  • Kim, Cheol-Min (School of Medicine, College of Medicine, Pusan National University) ;
  • Ahn, Soon-Cheol (School of Medicine, College of Medicine, Pusan National University) ;
  • Choi, Yong-Lark (Department of Biotechnology, Faculty of Natural Resources and Life Science, Dong-A University)
  • Published : 2009.02.28

Abstract

Acinetohacter baumannii BD5 was isolated from waters of Baek-du mountain, and the lipase gene was cloned using a PCR technique. The deduced amino acid sequence of the lipase and lipase chaperone were found to encode proteins of 325 aa and 344 aa with a molecular mass of 35 kDa and 37 kDa, respectively. The lipase gene was cloned and expressed in Escherichia coli BL21(trxB) as an inclusion body, which was subsequently solubilized by urea, and then purified using Ni-affinity chromatography. After being purified, the lipase was refolded by incubation at $4^{\circ}C$ in the presence of a 1:10 molar ratio of lipase:chaperone. The maximal activity of the refolded lipase was observed at a temperature of $35^{\circ}C$ and pH 8.3 when p-NP caprate(C10) was used as a substrate; however, 28% of the activity observed at $35^{\circ}C$ was still remaining at $0^{\circ}C$. The stability of the purified enzyme at low temperatures indicates that it is a cold-adapted enzyme. The refolded lipase was activated by $Ca^{2+},\;Mg^{2+},\;and\;Mn^{2+}$, whereas $Zn^{2+}\;and\;Cu^{2+}$ inhibited it. Additionally, 0.1% Tween 20 increased the lipase activity by 33%, but SDS and Triton X-100 inhibited the lipase activity by 40% and 70%, respectively.

Keywords

References

  1. Alquati, C., L. De Gioia, G. Santarossa, L. Alberghina, P. Fantucci, and M. Lotti. 2002. The cold-active lipase of Pseudomonas fragi. Eur. J. Biochem. 269: 3321-3328 https://doi.org/10.1046/j.1432-1033.2002.03012.x
  2. Arpigny, J. L. and K. E. Jaeger. 1999. Bacterial lipolytic enzymes: Classification and properties. Biochem. J. 343: 177- 183 https://doi.org/10.1042/0264-6021:3430177
  3. Bell, P. J. L., A. Sunna, M. D. Gibbs, N. C. Curach, H. Nevalainen, and P. L. Bergquist. 2002. Prospecting for novel lipase genes using PCR. Microbiology 148: 2283-2291
  4. Breuil, C. and D. J. Kushner. 1974. Partial purification and characterization of the lipase of a facultatively psychrophilic bacterium (Acinetobacter $O_{16}$). Can. J. Microbiol. 21: 434- 441 https://doi.org/10.1139/m75-062
  5. Choo, D. W., T. Kurihara, T. Suzuki, K. Soda, and N. Esaki. 1998. A cold-adapted lipase of an alaskan psychrotroph, Pseudomonas sp. strain B11-1: Gene cloning and enzyme purification and characterization. Appl. Environ. Microbiol. 64: 486-491
  6. Han, S. J., J. H. Back, M. Y. Yoon, P. K. Shin, C. S. Cheong, M. H. Sung, S. P. Hong, I. Y. Chung, and Y. S. Han. 2003. Expression and characterization of a novel enantioselective lipase from Acinetobacter species SY-01. Biochimie 85: 501- 510 https://doi.org/10.1016/S0300-9084(03)00057-9
  7. Hong, M. C. and M. C. Chang. 1998. Purification and characterization of an alkaline lipase from a newly isolated Acinetobacter radioresistens CMC-1. Biotechnol. Lett. 20: 1027-1029 https://doi.org/10.1023/A:1005407005371
  8. Jaeger, K. E., B. W. Dijkstra, and M. T. Reetz. 1999. Bacterial, biocatalysts: Molecular biology, three-dimensional structures, and biotechnological applications of lipases. Annu. Rev. Microbiol. 53: 315-351 https://doi.org/10.1146/annurev.micro.53.1.315
  9. Jaeger, K. E. and T. Eggert. 2002. Lipases for biotechnology. Curr. Opin. Biotechnol. 13: 390-397 https://doi.org/10.1016/S0958-1669(02)00341-5
  10. Kim, H. K., Y. J. Jung, W. C. Choi, H. S. Ryu, T. K. Oh, and J. K. Lee. 2004. Sequence-based approach to finding functional lipases from microbial genome databases. FEMS Microbiol. Lett. 235: 349-355 https://doi.org/10.1111/j.1574-6968.2004.tb09609.x
  11. Kim, S. H., I. H. Park, S. C. Lee, Y. S. Lee, Y. Zhou, C. M. Kim, S. C. Ahn, and Y. L. Choi 2007. Discovery of the three novel lipase (lipA1, lipA2, and lipA3) and lipase-specific chaperone (lipB) genes present in Acinetobacter sp. DYL129. Appl. Microbiol. Biotechnol. 77: 1041-1051
  12. Kojima, Y., M. Kobayashi, and S. Shimizu. 2003. A novel lipase from Pseudomonas fluorescens HU380: Gene cloning, overproduction, renaturation-activation, two-step purification, and characterization. J. Biosci. Bioeng. 96: 242-249 https://doi.org/10.1016/S1389-1723(03)80188-3
  13. Kok, R. G., J. J. Van Thor, I. M. Nugteren-Roodzant, M. B. Brouwer, M. R. Egmond, C. B. Nudel, B. Vosman, and K. J. Hellingwerf. 1995. Characterization of the extracellular lipase, LipA, of Acinetobacter calcoaceticus BD413 and sequence analysis of the cloned structural gene. Mol. Microbiol. 15: 803- 818 https://doi.org/10.1111/j.1365-2958.1995.tb02351.x
  14. Kulakova, L., A. Galkin, T. Nakayama, T. Nishino, and N. Esaki. 2004. Cold-active esterase form Psychrobacter sp. Ant300: Gene cloning, characterization, and the effects of Gly→Pro substitution near the active site on its catalytic activity and stability. Biochim. Biophys. Acta 1696: 59-65 https://doi.org/10.1016/j.bbapap.2003.09.008
  15. Kumar, S., K. Kikon, A. Upadhyay, S. S. Kanwar, and R. Gupta. 2005. Production, purification, and characterization of lipase from thermophilic and alkaliphilic Bacillus coagulans BTS-3. Protein Expr. Purif. 41: 38-44 https://doi.org/10.1016/j.pep.2004.12.010
  16. Luo, Y., Y. Zheng, Z. Jiang, Y. Ma, and D. Wei. 2006. A novel psychrophilic lipase from Pseudomonas fluorescens with unique property in chiral resolution and biodiesel production via transesterification. Appl. Microbiol. Biotechnol. 73: 349- 355 https://doi.org/10.1007/s00253-006-0478-3
  17. Quyen, D. T., T T. G. Le, T. T. Nguyen, T. K. Oh, and J. K. Lee. 2005. High-level heterologous expression and properties of a novel lipase from Ralstonia sp. M1. Protein Expr. Purif. 39: 97-106 https://doi.org/10.1016/j.pep.2004.10.001
  18. Quyen, D. T., T. T. Nguyen, T. T. G. Le, H. K. Kim, T. K. Oh, and J. K. Lee. 2004. A novel lipase/chaperone pair from Ralstonia sp. M1: Analysis of the folding interaction and evidence for gene loss in R. solanacearum. Mol. Gen. Genomics 272: 538-549 https://doi.org/10.1007/s00438-004-1084-7
  19. Rashid, N., Y. Shimada, S. Ezaki, H. Atomi, and T. Imanaka. 2001. Low-temperature lipase from psychrotrophic Pseudomonas sp. strain KB700A. Appl. Environ. Microbiol. 67: 4064-4069 https://doi.org/10.1128/AEM.67.9.4064-4069.2001
  20. Ryu, H. S., H. K. Kim, W. C. Choi, M. H. Kim, S. Y. Park, N. S. Han, T. K. Oh, and J. K. Lee. 2006. New cold-adapted lipase from Photobacterium lipolyticum sp. nov. that is closely related to filamentous fungal lipases. Appl. Microbiol. Biotechnol. 70: 321-326 https://doi.org/10.1007/s00253-005-0058-y
  21. Schlieben, N. H., K. Niefind, and D. Schomburg. 2004. Expression, purification, and aggregation studies of His-tagged thermoalkalophilic lipase from Bacillus thermocatenulatus. Protein Expr. Purif. 34: 103-110 https://doi.org/10.1016/j.pep.2003.11.014
  22. Snellman, E. A. and R. R. Colwell. 2004. Acinetobacter lipases: Molecular biology, biochemical properties and biotechnological potential. J. Ind. Microbiol. Biotechnol. 31: 391-400 https://doi.org/10.1007/s10295-004-0167-0
  23. Snellman, E. A., E. R. Sullivan, and R. R. Colwell. 2002. Purification and properties of the extracellular lipase, LipA of Acinetobacter sp. RAG-1. Eur. J. Biochem. 269: 5771-5779 https://doi.org/10.1046/j.1432-1033.2002.03235.x
  24. Sullivan, E. R., J. G. Leahy, and R. R. Colwell. 1999. Cloning and sequence analysis of the lipase and lipase chaperone encoding genes from Acinetobacter calcoaceticus RAG-1, and redefinition of a proteobacterial lipase family and an analogous lipase chaperone family. Gene 230: 277-285 https://doi.org/10.1016/S0378-1119(99)00026-8
  25. Suzuki, T., T. Nakayama, D. W. Choo, Y. Hirano, T. Kurihara, T. Nishino, and N. Esaki. 2003. Cloning, heterologous expression, renaturation, and characterization of a cold-adapted esterase with unique primary structure from a psychrotroph Pseudomonas sp. strain B11-1. Protein Expr. Purif. 30: 171-178 https://doi.org/10.1016/S1046-5928(03)00128-1
  26. Suzuki, T., T. Nakayama, T. Kurihara, T. Nishino, and N. Esaki. 2001. Cold-active lipolytic activity of psychrotrophic Acinetobacter sp. strain No. 6. J. Biosci. Bioeng. 92: 144-148 https://doi.org/10.1263/jbb.92.144
  27. Tang, S. J., K. H. Sun, G. H. Sun, T. Y. Chang, and G. C. Lee. 2000. Recombinant expression of the Candida rugosa lip4 lipase in Escherichia coli. Protein Expr. Purif. 20: 308-313 https://doi.org/10.1006/prep.2000.1304
  28. Zhang, J., S. Lin, and R. Zeng. 2007. Cloning, expression and characterization of a cold-adapted lipase gene from an Antarctic deep-sea psychrotrophic bacterium, Psychrobacter sp. 7195. J. Microbiol. Biotechnol. 17: 604-610