Browse > Article

Gene Cloning, Purification, and Characterization of a Cold-Adapted Lipase Produced by Acinetobacter baumannii BD5  

Park, In-Hye (Department of Biotechnology, Faculty of Natural Resources and Life Science, Dong-A University)
Kim, Sun-Hee (Department of Biotechnology, Faculty of Natural Resources and Life Science, Dong-A University)
Lee, Yong-Seok (Department of Biotechnology, Faculty of Natural Resources and Life Science, Dong-A University)
Lee, Sang-Cheol (Department of Biotechnology, Faculty of Natural Resources and Life Science, Dong-A University)
Zhou, Yi (Department of Biotechnology, Faculty of Natural Resources and Life Science, Dong-A University)
Kim, Cheol-Min (School of Medicine, College of Medicine, Pusan National University)
Ahn, Soon-Cheol (School of Medicine, College of Medicine, Pusan National University)
Choi, Yong-Lark (Department of Biotechnology, Faculty of Natural Resources and Life Science, Dong-A University)
Publication Information
Journal of Microbiology and Biotechnology / v.19, no.2, 2009 , pp. 128-135 More about this Journal
Abstract
Acinetohacter baumannii BD5 was isolated from waters of Baek-du mountain, and the lipase gene was cloned using a PCR technique. The deduced amino acid sequence of the lipase and lipase chaperone were found to encode proteins of 325 aa and 344 aa with a molecular mass of 35 kDa and 37 kDa, respectively. The lipase gene was cloned and expressed in Escherichia coli BL21(trxB) as an inclusion body, which was subsequently solubilized by urea, and then purified using Ni-affinity chromatography. After being purified, the lipase was refolded by incubation at $4^{\circ}C$ in the presence of a 1:10 molar ratio of lipase:chaperone. The maximal activity of the refolded lipase was observed at a temperature of $35^{\circ}C$ and pH 8.3 when p-NP caprate(C10) was used as a substrate; however, 28% of the activity observed at $35^{\circ}C$ was still remaining at $0^{\circ}C$. The stability of the purified enzyme at low temperatures indicates that it is a cold-adapted enzyme. The refolded lipase was activated by $Ca^{2+},\;Mg^{2+},\;and\;Mn^{2+}$, whereas $Zn^{2+}\;and\;Cu^{2+}$ inhibited it. Additionally, 0.1% Tween 20 increased the lipase activity by 33%, but SDS and Triton X-100 inhibited the lipase activity by 40% and 70%, respectively.
Keywords
Acinetobacter baumannii BD5; genome walking PCR; Ni-affinity chromatography; refolding;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 11  (Related Records In Web of Science)
연도 인용수 순위
1 Arpigny, J. L. and K. E. Jaeger. 1999. Bacterial lipolytic enzymes: Classification and properties. Biochem. J. 343: 177- 183   DOI   ScienceOn
2 Han, S. J., J. H. Back, M. Y. Yoon, P. K. Shin, C. S. Cheong, M. H. Sung, S. P. Hong, I. Y. Chung, and Y. S. Han. 2003. Expression and characterization of a novel enantioselective lipase from Acinetobacter species SY-01. Biochimie 85: 501- 510   DOI   ScienceOn
3 Hong, M. C. and M. C. Chang. 1998. Purification and characterization of an alkaline lipase from a newly isolated Acinetobacter radioresistens CMC-1. Biotechnol. Lett. 20: 1027-1029   DOI   ScienceOn
4 Jaeger, K. E. and T. Eggert. 2002. Lipases for biotechnology. Curr. Opin. Biotechnol. 13: 390-397   DOI   ScienceOn
5 Kulakova, L., A. Galkin, T. Nakayama, T. Nishino, and N. Esaki. 2004. Cold-active esterase form Psychrobacter sp. Ant300: Gene cloning, characterization, and the effects of Gly→Pro substitution near the active site on its catalytic activity and stability. Biochim. Biophys. Acta 1696: 59-65   DOI   PUBMED
6 Kumar, S., K. Kikon, A. Upadhyay, S. S. Kanwar, and R. Gupta. 2005. Production, purification, and characterization of lipase from thermophilic and alkaliphilic Bacillus coagulans BTS-3. Protein Expr. Purif. 41: 38-44   DOI   ScienceOn
7 Quyen, D. T., T T. G. Le, T. T. Nguyen, T. K. Oh, and J. K. Lee. 2005. High-level heterologous expression and properties of a novel lipase from Ralstonia sp. M1. Protein Expr. Purif. 39: 97-106   DOI   ScienceOn
8 Ryu, H. S., H. K. Kim, W. C. Choi, M. H. Kim, S. Y. Park, N. S. Han, T. K. Oh, and J. K. Lee. 2006. New cold-adapted lipase from Photobacterium lipolyticum sp. nov. that is closely related to filamentous fungal lipases. Appl. Microbiol. Biotechnol. 70: 321-326   DOI   ScienceOn
9 Snellman, E. A. and R. R. Colwell. 2004. Acinetobacter lipases: Molecular biology, biochemical properties and biotechnological potential. J. Ind. Microbiol. Biotechnol. 31: 391-400   DOI   ScienceOn
10 Suzuki, T., T. Nakayama, D. W. Choo, Y. Hirano, T. Kurihara, T. Nishino, and N. Esaki. 2003. Cloning, heterologous expression, renaturation, and characterization of a cold-adapted esterase with unique primary structure from a psychrotroph Pseudomonas sp. strain B11-1. Protein Expr. Purif. 30: 171-178   DOI   ScienceOn
11 Kim, H. K., Y. J. Jung, W. C. Choi, H. S. Ryu, T. K. Oh, and J. K. Lee. 2004. Sequence-based approach to finding functional lipases from microbial genome databases. FEMS Microbiol. Lett. 235: 349-355   DOI   PUBMED
12 Tang, S. J., K. H. Sun, G. H. Sun, T. Y. Chang, and G. C. Lee. 2000. Recombinant expression of the Candida rugosa lip4 lipase in Escherichia coli. Protein Expr. Purif. 20: 308-313   DOI   ScienceOn
13 Kim, S. H., I. H. Park, S. C. Lee, Y. S. Lee, Y. Zhou, C. M. Kim, S. C. Ahn, and Y. L. Choi 2007. Discovery of the three novel lipase (lipA1, lipA2, and lipA3) and lipase-specific chaperone (lipB) genes present in Acinetobacter sp. DYL129. Appl. Microbiol. Biotechnol. 77: 1041-1051   PUBMED
14 Breuil, C. and D. J. Kushner. 1974. Partial purification and characterization of the lipase of a facultatively psychrophilic bacterium (Acinetobacter $O_{16}$). Can. J. Microbiol. 21: 434- 441   DOI   ScienceOn
15 Jaeger, K. E., B. W. Dijkstra, and M. T. Reetz. 1999. Bacterial, biocatalysts: Molecular biology, three-dimensional structures, and biotechnological applications of lipases. Annu. Rev. Microbiol. 53: 315-351   DOI   ScienceOn
16 Sullivan, E. R., J. G. Leahy, and R. R. Colwell. 1999. Cloning and sequence analysis of the lipase and lipase chaperone encoding genes from Acinetobacter calcoaceticus RAG-1, and redefinition of a proteobacterial lipase family and an analogous lipase chaperone family. Gene 230: 277-285   DOI   ScienceOn
17 Choo, D. W., T. Kurihara, T. Suzuki, K. Soda, and N. Esaki. 1998. A cold-adapted lipase of an alaskan psychrotroph, Pseudomonas sp. strain B11-1: Gene cloning and enzyme purification and characterization. Appl. Environ. Microbiol. 64: 486-491   PUBMED
18 Quyen, D. T., T. T. Nguyen, T. T. G. Le, H. K. Kim, T. K. Oh, and J. K. Lee. 2004. A novel lipase/chaperone pair from Ralstonia sp. M1: Analysis of the folding interaction and evidence for gene loss in R. solanacearum. Mol. Gen. Genomics 272: 538-549   DOI   ScienceOn
19 Rashid, N., Y. Shimada, S. Ezaki, H. Atomi, and T. Imanaka. 2001. Low-temperature lipase from psychrotrophic Pseudomonas sp. strain KB700A. Appl. Environ. Microbiol. 67: 4064-4069   DOI   ScienceOn
20 Schlieben, N. H., K. Niefind, and D. Schomburg. 2004. Expression, purification, and aggregation studies of His-tagged thermoalkalophilic lipase from Bacillus thermocatenulatus. Protein Expr. Purif. 34: 103-110   DOI   ScienceOn
21 Snellman, E. A., E. R. Sullivan, and R. R. Colwell. 2002. Purification and properties of the extracellular lipase, LipA of Acinetobacter sp. RAG-1. Eur. J. Biochem. 269: 5771-5779   DOI   ScienceOn
22 Zhang, J., S. Lin, and R. Zeng. 2007. Cloning, expression and characterization of a cold-adapted lipase gene from an Antarctic deep-sea psychrotrophic bacterium, Psychrobacter sp. 7195. J. Microbiol. Biotechnol. 17: 604-610   PUBMED
23 Kojima, Y., M. Kobayashi, and S. Shimizu. 2003. A novel lipase from Pseudomonas fluorescens HU380: Gene cloning, overproduction, renaturation-activation, two-step purification, and characterization. J. Biosci. Bioeng. 96: 242-249   DOI   PUBMED
24 Luo, Y., Y. Zheng, Z. Jiang, Y. Ma, and D. Wei. 2006. A novel psychrophilic lipase from Pseudomonas fluorescens with unique property in chiral resolution and biodiesel production via transesterification. Appl. Microbiol. Biotechnol. 73: 349- 355   DOI   ScienceOn
25 Suzuki, T., T. Nakayama, T. Kurihara, T. Nishino, and N. Esaki. 2001. Cold-active lipolytic activity of psychrotrophic Acinetobacter sp. strain No. 6. J. Biosci. Bioeng. 92: 144-148   DOI   ScienceOn
26 Alquati, C., L. De Gioia, G. Santarossa, L. Alberghina, P. Fantucci, and M. Lotti. 2002. The cold-active lipase of Pseudomonas fragi. Eur. J. Biochem. 269: 3321-3328   DOI   ScienceOn
27 Kok, R. G., J. J. Van Thor, I. M. Nugteren-Roodzant, M. B. Brouwer, M. R. Egmond, C. B. Nudel, B. Vosman, and K. J. Hellingwerf. 1995. Characterization of the extracellular lipase, LipA, of Acinetobacter calcoaceticus BD413 and sequence analysis of the cloned structural gene. Mol. Microbiol. 15: 803- 818   DOI   ScienceOn
28 Bell, P. J. L., A. Sunna, M. D. Gibbs, N. C. Curach, H. Nevalainen, and P. L. Bergquist. 2002. Prospecting for novel lipase genes using PCR. Microbiology 148: 2283-2291   PUBMED   ScienceOn