Characterization of the Oxidation Roasting of Low Grade Molybdenite Concentrate

저품위(底品位) 휘수연석(煇水鉛石) 정광(精鑛)의 산화배소(酸化焙燒) 특성(特性)

  • Kim, Byung-Su (Metal Recovery Group, Mineral Resources Research Division, Korea Institute of Geoscience & Mineral Resources (KIGAM)) ;
  • Lee, Hoo-In (Metal Recovery Group, Mineral Resources Research Division, Korea Institute of Geoscience & Mineral Resources (KIGAM)) ;
  • Choi, Young-Yoon (Metal Recovery Group, Mineral Resources Research Division, Korea Institute of Geoscience & Mineral Resources (KIGAM)) ;
  • Kim, Sang-Bae (Metal Recovery Group, Mineral Resources Research Division, Korea Institute of Geoscience & Mineral Resources (KIGAM))
  • 김병수 (한국지질자원연구원 광물자원연구본부 금속회수연구실) ;
  • 이후인 (한국지질자원연구원 광물자원연구본부 금속회수연구실) ;
  • 최영윤 (한국지질자원연구원 광물자원연구본부 금속회수연구실) ;
  • 김상배 (한국지질자원연구원 광물자원연구본부 금속회수연구실)
  • Published : 2009.10.27

Abstract

Molybdenite concentrate ($MoS_2$) is the major mineral for the molybdenum industry, of which the industrial processing is first converted to technical grade molybdenum trioxide ($MoO_3$) by its oxidative roasting and purification, used as a raw material for manufacturing several molybdenum compounds. In the present work, detailed experimental results for the oxidative roasting of low grade Mongolian molybdenite concentrate are presented. The experiments were carried out in the temperature range of 793 to 823 K under an oxygen partial pressure range of 0.08 atm to 0.21 atm by using a thermogravimetric analysis technique. The molybdenite concentrate was an average particle size of $67\;{\mu}m$. In the oxidative roasting of low grade Mongolian molybdenite concentrate, more than 95% of molybdenite was converted to molybdenum trioxide in 60 min. at 828 K. The lander equation was found to be useful in describing the rates of the oxidative roasting and the reaction order with respect to oxygen concentration in a gaseous mixture with nitrogen was 0.11 order.

몰리브덴 산업에서 가장 중요한 광물인 휘수연석($MoS_2$) 정광은 일련의 산화배소정제 공정을 통하여 공업용 산화몰리브덴(technical grade $MoO_3$)으로 제조되어 각종 몰리브덴 화합물의 중요한 원료로서 사용된다. 본 연구에서는 저품위 휘수연석 정광의 산화배소 특성을 조사하였다. 실험은 0.08 atm~0.21 atm의 산소분압과 793~823 K의 배소은도 범위에서 TGA 장비를 사용하여 수행하였으며, 사용한 휘수연석 정광의 입자크기는 평균 $67\;{\mu}m$ 이다. 실험 결과 산화배소 온도 823 K, 시간 60분에서 95% 이상의 휘수연석이 산화몰리브덴으로 전환되는 것으로 나타났다. 또한 Jander 식이 저품위 몽골산 휘수연석 정광의 산화배소 속도 데이터를 분석하는데 유용한 것으로 분석되었으며, 산소 분압에 대해서는 0.11 차인 것으로 조사되었다.

Keywords

References

  1. A. G Kholmogorove, O. N. Kononova, 2005: Processing mineral raw materials in Siberia: ores of molybdenum, tungsten, lead and gold, Hydrometallurgy, 76, pp. 37-54 https://doi.org/10.1016/j.hydromet.2004.08.002
  2. H. F. Mark et al., 1981: Kirk-Othmer Encyclopedia of Chemical Technology, 15, 3rd Edition, pp. 670-682, John Wiley & Sons, America
  3. J. A. M. Van den Berg et al., 2002: Comprehensive processing of low grade sulphidic molybdenum ores, Minerals Engineering, 15, pp. 879-883 https://doi.org/10.1016/S0892-6875(02)00135-8
  4. C. K. Gupta, 1992: Extractive Metallurgy of Molybdenum, pp. 225-238, CRC press, USA
  5. R. Ebrahimi-Kahrizsangi, M. H. Abbasi, and A. Saidi, 2006: Mechanochemical effects on the molybdenite roasting kinetics, Chemical Engineering Journal, 121, pp. 65-71 https://doi.org/10.1016/j.cej.2006.04.011
  6. P. M. Prasad, T. R. Mankhand, and P.S. Rao, 1993: Lime-scavenged reduction of molybdenite, Minerals Engineering, 6, pp. 857-871 https://doi.org/10.1016/0892-6875(93)90059-V
  7. A. M. Abdel-Rehim, 1999: Thermal analysis and X-ray diffraction of roasting of Egyptian molybdenite, J. Therm. Anal. Cal., 57, pp. 415-431 https://doi.org/10.1023/A:1010151605309
  8. S. Singh et al., 1988: Studies on the processing of a low grade molybdenite concentrate by lime roasting, Mineral Engineering, 1(4), pp. 337-342 https://doi.org/10.1016/0892-6875(88)90023-4
  9. B. S. Kim et al., 2008: Kinetics of oxidative roasting of complex copper concentrate, Mater. Trans., 49(5), pp. 1192-1198 https://doi.org/10.2320/matertrans.MER2007311
  10. B. S. Kim et al., 2008: Oxidative sulfur removal from complex copper concentrate, Mater. Trans., 49(8), pp. 1989-1892
  11. F. Habashi, 1969: Extractive Metallurgy, 1-2, pp. 155-156, Gordon and breach, science publishers Inc., New York, USA
  12. C. H. Bamford, C. H. F. Tipper, 1980: Comprehensive chemical kinetics, 22, pp. 68-72, Elsevier Scientific Publishing company, Amsterdam
  13. B. S. Kim et al., 2004: Kinetics of the volatilization reaction of lead in EAF dust, J. Kor. Inst. Met. & Mater., 42(4), pp. 369-375