• Title/Summary/Keyword: 휘수연석

Search Result 20, Processing Time 0.023 seconds

Characterization of the Oxidation Roasting of Low Grade Molybdenite Concentrate (저품위(底品位) 휘수연석(煇水鉛石) 정광(精鑛)의 산화배소(酸化焙燒) 특성(特性))

  • Kim, Byung-Su;Lee, Hoo-In;Choi, Young-Yoon;Kim, Sang-Bae
    • Resources Recycling
    • /
    • v.18 no.5
    • /
    • pp.19-25
    • /
    • 2009
  • Molybdenite concentrate ($MoS_2$) is the major mineral for the molybdenum industry, of which the industrial processing is first converted to technical grade molybdenum trioxide ($MoO_3$) by its oxidative roasting and purification, used as a raw material for manufacturing several molybdenum compounds. In the present work, detailed experimental results for the oxidative roasting of low grade Mongolian molybdenite concentrate are presented. The experiments were carried out in the temperature range of 793 to 823 K under an oxygen partial pressure range of 0.08 atm to 0.21 atm by using a thermogravimetric analysis technique. The molybdenite concentrate was an average particle size of $67\;{\mu}m$. In the oxidative roasting of low grade Mongolian molybdenite concentrate, more than 95% of molybdenite was converted to molybdenum trioxide in 60 min. at 828 K. The lander equation was found to be useful in describing the rates of the oxidative roasting and the reaction order with respect to oxygen concentration in a gaseous mixture with nitrogen was 0.11 order.

Mineralogical Characteristics and Fundamental Study of Flotation for Molybdenum Ore (몰리브덴광의 광물학적 특성 및 부선 기초연구)

  • Oyunbileg Purev;Hyun Soo Kim;Chul-Hyun Park
    • Resources Recycling
    • /
    • v.31 no.6
    • /
    • pp.73-80
    • /
    • 2022
  • This study investigated the mineralogical characteristics and basic flotation properties of domestic molybdenum ores. The source mineral of molybdenum was identified as molybdenite, and the main gangue minerals in the raw ore were silicate minerals. Copper, lead, and zinc were also found in trace amounts. Based on the results of basic flotation properties, molybdenite's zeta potential showed negative charges in all pH ranges. The contact angle of molybdenite increased with pH, reaching a maximum of 74° at pH 9. In optimal conditions, the grade and recovery of the concentrate by unit flotation were MoS2 82.4% and 92.04%, respectively. Further investigation of the impurities in the concentrate revealed a sulfide mineral with surface characteristics similar to molybdenite and silicate minerals combined with molybdenite, which may degrade the quality of the concentrate. To improve the concentrate quality, we intend to control silicate minerals through regrinding and liberation and use column flotation to improve fine particle separation efficiency.

Geochemistry and Molybdenum Mineralisation of the Shap Granite, Westmorland, Northern England (영국(英國)의 북부(北部) Westmorland 지역(地域)에 분포(分布)한 Snap 화강암(花崗岩)의 지화학적(地火學的) 연구(硏究)와 휘수연석(輝水鉛石)의 광화작용(鑛化作用)에 관(關)한 연구(硏究))

  • Kim, Sahng Yup
    • Economic and Environmental Geology
    • /
    • v.9 no.4
    • /
    • pp.177-212
    • /
    • 1976
  • The Shap granite encloses well developed quartz veins and veinlets containing molybdenite in association with other ore sulphide minerals. The preliminary study of the geochemical aspects of the granite stock and mineralisation of molybdenite in comparison with the porphyry deposits is carried out; the distribution of major, minor and ore metal elements in wall rocks, altered envelope and veins, and the molybdenum mineralisation, mainly in connexion with hydrothermal alteration are discussed. The molybdenite and other ore mineralisation, especially bismuthinite and chalcopyrite, are spatially closely related to the hydrothermal alteration adjacent to the veinings, and are dominant where the strong orthoclase alteration has taken place. A pattern of alteration and mineralisation can be recognised and forms the basic for the subdivision of the quarry into several distinct zones, which correspond with the sequence of alteration and mineralisation. The veins, veinlets and their alteration haloes can be further subdivided into a series of concentric zones.

  • PDF

Form of Molybdenum in the Carbonaceous Black Slates of the Ogcheon Belt (옥천대 탄질 흑색 점판암내 몰리브덴의 존재 형태)

  • 정기영;이석훈
    • Journal of the Mineralogical Society of Korea
    • /
    • v.14 no.1
    • /
    • pp.52-57
    • /
    • 2001
  • 옥천대의 탄질 흑색 점파암에 최대 1000 ppm까지 부화되어 있는 몰리브덴의 광물학적 존재형태를 밝히기 위하여 충청북도 괴산군 덕평지역 흑색점판암에 대하여 박편제작, X선회절분석, 중성자활성화학분석, 주사전자현미경관찰, 에너지분산 X선분석, 파장분산 X선분석 등을 실시하였다. 그결과 몰리브덴은 두께 $1~2\mu$m 정도의 극미립 엽상 휘수연석($MoS_2$)으로 존재함이 판명되었다. 휘수연석은 흔히나이트의 포획물로 산출된다. 탄질흑색 점판암에 우라늄 및 바다듐과 함께 다량의 몰리브덴이 함유되어 있음에도 과거의 연구에서 그 존재형태가 규명되지 않은원인은, 극미립 휘수연석이 불투명한 세립 탄질기질에 분산 분포하기 때문이다.

  • PDF

Leaching behavior of rhenium and molybdenum from molybdenite roasting dust in NaOH solutions (휘수연석(輝水鉛石)의 배소(焙燒) 중 발생한 분경(粉慶)으로부터 NaOH에 의한 Rhenium과 Molybdenum의 침출(浸出))

  • Kim, Young-Uk;Kang, Jin-Gu;Sohn, Jeong-Soo;Cho, Bong-Gyu;Shin, Shun-Myung
    • Resources Recycling
    • /
    • v.18 no.5
    • /
    • pp.37-43
    • /
    • 2009
  • The demand for rhenium has considerably increased recently owing to the large-scale consumption in industries and the price of rhenium has increased owing to the lack of supply and its availability. The dust from the roasting of molybdenite was employed to investigate the leaching behavior of rhenium and molybdenum. Leaching experiments were done by varying optimum parameters, such as reaction time, NaOH concentration and leaching temperature. The optimum leaching condition was found to be $4\;mol{\cdot}L^{-1}$ NaOH, 2 hours leaching time, $100\;g{\cdot}L^{-1}$ solid/liquid ratio, $80^{\circ}C$ temperature, and 250 rpm. At this condition, leaching percentage of rhenium and molybdenum was 86.1% and 88.6%, respectively.

Flotation for Recycling of a Waste Water Filtered from Molybdenite Tailings (몰리브덴 선광광미 응집여과액 재활용을 위한 부유선별 특성)

  • Park, Chul-Hyun;Jeon, Ho-Seok;Han, Oh-Hyung;Kim, Byoung-Gon;Baek, Sang-Ho;Kim, Hak-Sun
    • Journal of the Mineralogical Society of Korea
    • /
    • v.23 no.3
    • /
    • pp.235-242
    • /
    • 2010
  • Froth flotation using the residual water in the end of flotation process has been performed through controlling of pH. IEP (isoelectric point) of molybdenite and quartz in distilled water was below pH 3 and pH 2.7, respectively and the stabilized range was pH 5~10. In case of a suspension in reusing water, zeta potential of molybdenite decreased to below -10 mV or less at over pH 4 due to residual flocculants. As result of pH control, flotation efficiency in the alkaline conditions was deteriorated by flocculation, resulting from expanded polymer chain, ion bridge of the divalent metal cations ($Ca^{2+}$), and hydrophobic interactions between the nonpolar site of polymer/the hydrophobic areas of the particle surfaces. However, the weak acid conditions (pH 5.5~6) improved the efficiency of flotation as hydrogen ions neutralize polymer chains and then weakened its function. In cleans after rougher flotation, the Mo grade of 52.7% and recovery of 90.1% could be successfully obtained under the conditions of 20 g/t kerosene, 50 g/t AF65, 300 g/t $Na_2SiO_3$, pH 5.5 and 2 cleaning times. Hence, we developed a technique which can continuously supply waste water filtered from tailings into the grinding-rougher-cleaning processes.

Significance of Ages of Tungsten Mineralization (중석(重石) 광화작용(鑛化作用) 시기(時期)의 의의(意義))

  • Moon, Kun Joo
    • Economic and Environmental Geology
    • /
    • v.28 no.6
    • /
    • pp.613-621
    • /
    • 1995
  • It is understood that many big tungsten deposits such as the Sangdong in Korea, Fugigatami in Japan, Yukon in Canada, Pine Creek in U.S.A and Vostok in Russia were formed at late Cretaceous ages. However, most of tungsten mineralization in China where half the total world tungsten ores is reserved took place in late Jurassic to early Cretaceous ages. While the close association of molybdenum with tungsten mineralization is observed in the deposits related with Cretaceous magma, tungsten deposits in China related with late Jurassic to early Cretaceous show a close association of tin as well as molybdenum mineralization. It is characteristic that tungsten mineralization in China was followed by tin mineralization. The mode of occurrence of tungsten ore deposits in China is various and may represent the origin of tungsten in general, since the larger half of total amount of tungsten ores in the world are reserved in China. In case of Korea, more than 90% of total production of tungsten was occupied by the Sangdong tungsten deposit, which produced molybdenite as a byproduct Even if tin is detected in ppm unit content, no cassiterite is found in the Sangdong tungsten orebody. A similar type of two tungsten deposits is comparatively studied in order to confirm the published data; one is the Moping tungsten deposit in China and the other is the Dehwa tungsten deposit in Korea. Mineral assemblages occurring in quartz veins of both deposits are more or less same except that zinnwaldite and cassiterite occur only in the former deposit Ages of zinnwaldite and muscovite closely with molybdenite in the former deposit are 181.1 Ma and 167.8 Ma respectively, while muscovites associated with molybdenite in the latter deposit show ages of 80.9 Ma and 80.2 Ma. These results may represent deficient supply of tin from the source granitoid from which tungsten was derived in Korean peninsula during Cretaceous period, while tin supplied during tungsten mineralization tended to increase and the active tin mineralization followed the Jurassic tungsten mineralization in China.

  • PDF

Present Status of Mineral Resources, Republic of Korea (한국(韓國)의 광물자원(鑛物資源) 현황(現況))

  • Oh, Mihn-Soo;Park, No-Young
    • Economic and Environmental Geology
    • /
    • v.21 no.3
    • /
    • pp.309-318
    • /
    • 1988
  • South Korea has about 50 useful mineral commodities for the mineral resources, among 330 kinds of minerals desoribed. In 1986, she exported 14 mineral commodities of silver, lead, tungsten, molybdenite, ceramic minerals, limestone and graphite etc... And the component ratio of mining industry in the gross national production (GNP) of South korea maintains 1.5% during last five years(1982 to 1986).

  • PDF

W-Sn-Bi-Mo Mineralization of Shizhuyuan deposit, Hunan Province, China (중국 호남성 시죽원 광상의 W-Sn-Bi-Mo광화작용)

  • 윤경무;김상중;이현구;이찬희
    • Economic and Environmental Geology
    • /
    • v.35 no.3
    • /
    • pp.179-189
    • /
    • 2002
  • The Geology of the Shizhuyuan W-Sn-Bi-Mo deposits, situated 16 Ian southeast of Chengzhou City, Hunan Province, China, consist of Proterozoic metasedimentary rocks, Devonian carbonate rocks, Jurassic granitic rocks, Cretaceous granite porphyry and ultramafic dykes. The Shizhuyuan polymetallic deposits were associated with medium- to coarse-grained biotite granite of stage I. According to occurrences of ore body, ore minerals and assemblages, they might be classified into three stages such as skarn, greisen and hydrothernlal stages. The skarn is mainly calcic skarn, which develops around the Qianlishan granite, and consists of garnet, pyroxene, vesuvianite, wollastonite, amphibolite, fluorite, epidote, calcite, scheelite, wolframite, bismuthinite, molybdenite, cassiterite, native bismuth, unidetified Bi- Te-S system mineral, magnetite, and hematite. The greisen was related to residual fluid of medium- to coarse-grained biotite granite, and is classified into planar and vein types. It is composed of quartz, feldspar, muscovite, chlorite, tourmaline, topaz, apatite, beryl, scheelite, wolframite, bismuthinite, molybdenite, cassiterite, native bismuth, unknown uranium mineral, unknown REE mineral, pyrite, magnetite, and chalcopyrite with minor hematite. The hydrothermal stage was related to Cretaceous porphyry, and consist of quartz, pyrite and chalcopyrite. Scheelite shows a zonal texture, and higher MoO) content as 9.17% in central part. Wolframite is WO); 71.20 to 77.37 wt.%, FeO; 9.37 to 18.40 wt.%, MnO; 8.17 to 15.31 wt.% and CaO; 0.01 to 4.82 wt.%. FeO contents of cassiterite are 0.49 to 4.75 wt.%, and show higher contents (4.]7 to 4.75 wt.%) in skarn stage (Stage I). Te and Se contents of native bismuth range from 0.00 to 1.06 wt.% and from 0.00 to 0.57 wt.%, respectively. Unidentified Bi-Te-S system mineral is Bi; 78.62 to 80.75 wt.%, Te; 12.26 to 14.76 wt.%, Cu; 0.00 to 0.42 wt.%, S; 5.68 to 6.84 wt.%, Se; 0.44 to 0.78 wt.%.

Geology and Mineralization in Trapiche Cu-Mo Deposit, Apurimac State in Southeastern Peru (페루 남동부 아뿌리막주 트라피체 동-몰리브데늄 광상의 지질 및 광화작용)

  • Yang, Seok-Jun;Heo, Chul-Ho;Kim, You-Dong
    • Economic and Environmental Geology
    • /
    • v.48 no.6
    • /
    • pp.525-536
    • /
    • 2015
  • Trapiche project corresponds to the advanced exploration stage which is thought to be a part of various porphyry copper deposits occurring in the margin of Andahuyalas-Yauri metallogenic belt. This deposit is genetically related to the monzonitic porphyry intrusion and Oligocene breccia pipe. Mineralization consists of primary sulfides such as pyrite, chalcopyrite, bornite, and molybdenite and secondary sulfides such as chalcocite, covellite and digenite. It occurs malachite, tenorite and cuprite as copper oxide. As a result of lixiviation or enrichment process, mineralization shows untypical zonation structure. Breccia and porphyry areas characterize the vertical zonation patterns. In the northern area, lixiviation zone, secondary enrichment zone, transitional zone and primary mineralized zone are distributed in northern area. In the western area of deposit, oxidation zone and mixed zones are narrowly occurred. Inferred resources of deposit is estimated to be 920 Mt @ 0.41% Cu with the cut-off grade of 0.15%.