DOI QR코드

DOI QR Code

Study on Sound Reflection Control using an Active Sound Absorber

능동흡음재를 이용한 음파반사 제어기법 연구

  • 장우석 (LIG넥스원 Maritime 연구센터) ;
  • 권대용 (LIG넥스원 Maritime 연구센터)
  • Published : 2009.11.30

Abstract

This paper reviews a study about sound reflection control using an active sound absorber. An active sound absorber includes sound transmitting and receiving piezocomposite sensor layers molded by water tight epoxy, and connected with a feedback controller. The multi-layer sensors and the controller consists a closed feedback loop, whose intrinsic characteristics shows excellent impedance matching performance within specified frequency band, and consequently, minimizes reflection waves. Multilayer sound transmission model is derived based on one dimensional model, and its performance is verified with experiment using a pulse tube setup.

이 논문은 능동흡음재를 이용한 수중음향반사파 상쇄에 관한 연구이다. 능동흡음재는 평판형 구동센서와 수신센서로 몰딩되고 외부 제어기와 연결된 구조로 되어있다. 이 두 층의 센서와 피드백제어기는 하나의 피드백 루프를 이루며, 이 루프의 특징은 외부로부터 인가되는 입사파에 대해 음향 임피던스가 자동적으로 정합되어, 자동적으로 반사파를 상쇄하는 특성을 가진다. 능동흡음재의 전기 구조 음향의 다중물리특성은 1차원 전달함수로 모델링 되고, 운용주파수 대역에서 입사파에 대한 반사파가 최소화 되도록 제어기의 전달함수가 설정된다. 능동형 흡음재는 수동형 흡음재의 두께에 비하여 현저히 얇은 두께를 가지며, 간단한 아날로그 회로 제어기만으로도 넓은 주파수 대역에서 우수한 흡음특성을 보인다.

Keywords

References

  1. T.R. Howarth, V.K. Varadan, X. Bao and V. V. Varadan, “Piezocomposite coating for active underwater Sound reduction,” J. Acoust. Soc. Am. vol. 91, no. 2, pp. 823-831, 1992 https://doi.org/10.1121/1.402542
  2. C. J. Mazzola, C J Active Sound Absorption, Namlak Publication, New York, 1993
  3. R. D. Corsaro, B. Houston, J. Bucaro, "Sensor-actuator tile for underwater surface impedance control studies," J. Acoust. Soc. Am. vol. 102, no. 3 , pp. 1573-1581, 1997 https://doi.org/10.1121/1.420103
  4. F D Shields, L. D. Lafleur, "Smart acoustically active surfaces," J. Acoust. Soc. Am. vol. 102, no. 3, pp. 1559-1566, 1997 https://doi.org/10.1121/1.420102
  5. L. D. Lafleur, F. D. Shields and J. E. Hendrix ‘"Acoustically active surfaces using piezorubber," J. Acoust. Soc. Am. vol. 90, pp. 1230-1237, 1991 https://doi.org/10.1121/1.402384
  6. R. Gentilman, D. Fiore, H. Phan. W. Serwatka and L. Bowen, "Manufacturing of 1-3 piezocomposite $SonoPanel^{TM}$ transducers," SPIE proceedings, vol. 447, pp. 274-281, 1995
  7. Z. Wu, X.-Q. Bao, V.K. Varadan, V.V. Varadan, “Broadband active acoustic absorbing coating with an adaptive digital controller,” Smart Matr. Struct. vol. 2, no. 1, pp. 40-44, 1993 https://doi.org/10.1088/0964-1726/2/1/006
  8. J. M. Zhang, W. Chang, V. K. Varadan and V. V. Varadan, “Passive underwater acoustic damping using shunted piezoelectric coating,” Smart Matr. Struct. vol. 10, no. 2, pp. 414-420, 2001 https://doi.org/10.1088/0964-1726/10/2/404
  9. J. M. Zhang, W. Chang, V. K. Varadan and V. V. Varadan, “Active underwater acoustic cancellation with pressure sensor and piezo-composite transducer,” J. Acoust. Soc. Am. vol. 108, no. 5, pp. 2638
  10. W. Chang, "Model Reduction and Robust Controller Design for Structural Acoustics," Ph.D. Thesis, Pennsylvania State University, 2001
  11. W. Chang, "Modeling of acoustic reflection and radiation fields generated from elastic boundary using MHSV model reduction," SPIE proceedings series, Modeling, signal processing, and control. Conference, San Diego CA, vol. 5757, pp. 398-407, 2005 https://doi.org/10.1117/12.599100
  12. B.A. Auld, “Acoustic Fields and Waves in Solids,” vol. 1, pp. 324-333, Wiley, New York, 1973
  13. W. P. Mason, Electromechanical Transducers and Wave Filters, Van Nostrand, New York. 1948
  14. IEEE Standard on Piezoelectricity, IEEE Trans. Son. Ultrason. vol. 31, no. 2, pp. 1-55, 1984 https://doi.org/10.1109/T-SU.1984.31486
  15. V. Easwaran, M. L. Munjal, “Analysis of reflection characteristics of a nomal incidence plane wave on resonant sound absorbers: A finite element approach,” J. Acoust. Soc. Am. vol. 93, no. 3, pp. 1308-1318, 1993 https://doi.org/10.1121/1.405416