• Title/Summary/Keyword: 능동흡음재

Search Result 4, Processing Time 0.018 seconds

Study on Sound Reflection Control using an Active Sound Absorber (능동흡음재를 이용한 음파반사 제어기법 연구)

  • Chang, Woo-Suk;Gweon, Dae-Yong
    • The Journal of the Acoustical Society of Korea
    • /
    • v.28 no.8
    • /
    • pp.806-814
    • /
    • 2009
  • This paper reviews a study about sound reflection control using an active sound absorber. An active sound absorber includes sound transmitting and receiving piezocomposite sensor layers molded by water tight epoxy, and connected with a feedback controller. The multi-layer sensors and the controller consists a closed feedback loop, whose intrinsic characteristics shows excellent impedance matching performance within specified frequency band, and consequently, minimizes reflection waves. Multilayer sound transmission model is derived based on one dimensional model, and its performance is verified with experiment using a pulse tube setup.

Transmitted Noise Reduction of Piezoelectric Smart Panels using Passive/Active Method in Wide Range frequency (수동/능동적 방법을 혼용한 압전지능패널의 광대역 전달 소음저감성능)

  • 이중근;박우철
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.2 no.2
    • /
    • pp.73-79
    • /
    • 2001
  • In this paper, the transmitted noise reduction performance of piezoelectric smart panels is experimentally studied. The proposed piezoelectric smart panels are comprised of plate structure on which piezoelectric sensor/actuators are bonded and sound absorbing material is provided. It is a combination of passive and active approaches utilizing a passive effect at high frequencies and an active effect at low frequencies. To prove the concept of piezoelectric smart panels, an acoustic measurement experiment is performed. An acoustic tunnel is designed and its acoustic characteristics are tested. Below 800Hz, the tunnel exhibits a plane wave guide characteristics. When an absorbing material is bonded on a single plate, a remarkable transmitted noise reduction in mid frequency range is observed except the first resonance frequency. By enabling the active control of single smart panel with negative feedback control. about 10dB noise reduction is achieved at the resonance frequencies. The double smart panel got 4dB at the first resonance frequency and has more potential to reduce the transmitted noise in a wide range frequency. Piezoelectric smart panels incorporating passive absorbing material and active piezoelectric devices is a promising technology for noise reduction in a wide range frequency.

  • PDF

Quiet Zone Generation by Absorption Materials (흡음재 배치를 이용한 정숙 공간 형성 방법)

  • 남경욱;박주배;김양한
    • Journal of KSNVE
    • /
    • v.11 no.2
    • /
    • pp.221-225
    • /
    • 2001
  • In order to make a quiet zone, one can consider various methods. Of the methods, this paper deals with the method using control materials such as absorption materials. This method controls sound fields by changing boundary conditions. First, this paper shows that the control material is essentially on the same road as active noise control (ANC) That is, we can consider the control material as the control source of ANC. However we cannot control the source strength. Second, this paper shows that the position of the control material is an important variable by a numerical simulation. And the strategy to optimize the position is addressed.

  • PDF

Study on Efficient Adaptive Controller for Attenuation of Engine Noises in a Car (자동차의 엔진소음 감쇠를 위한 효율적인 적응제어기에 대한 연구)

  • Kwon, Oh-Sang
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.9 no.9
    • /
    • pp.983-989
    • /
    • 2014
  • In this paper, a new active noise control method was proposed to decrease a weight of car, and to increase a fuel efficiency and to provide passengers' comfort and calmness, instead of a passive noise control method such as sound absorbing and insulating materials. The proposed method is an enhanced active noise controller operating by a bidirectional control algorithm. The algorithm is simple to implement and available to analyze mathematically with nearly equivalent complexity of computation. Through simulations for engine noises of a car, the proposed controller was verified that its performances of time and frequency domain were superior to those of both feedforward and feedback controllers, and it had better capability of controlling the noises when the impulsive disturbance was flow in and the response of secondary path was varied.