DOI QR코드

DOI QR Code

Manufacture of Flow Phantom with Stenosis and Imaging Evaluation of Power Doppler

혈관협착팬텀의 제작 및 파워도플러의 영상 평가

  • Published : 2009.11.30

Abstract

Flow phantom with stenosis was manufactured using an auto-injector to obtain angiostenotic flow information and quality assurance (QA) for ultrasound diagnostic instrumentation. Effectiveness of manufactured flow phantom with stenosis was investigated with power Doppler that was known to have diagnostic efficiency for angiostenosis. The flow phantom with stenosis was manufactured to 70% stenosis with 8 mm and 2.4 mm silicon tube, and silicone tube was covered with gelatin that has acoustic characteristics similar to soft tissue. When the linear transducer was used for measurement, the estimated diameter of normal vessel was measured lower than that of normal value, and the estimated diameter of stenosed vessel was measured higher than that of normal value. The measured parameters were not affected except for the radical conditions such as gain of 60%, PRF of 3000 Hz, use of maximal filter or angle. In addition, when the convex transducer was used for measurement, measurement parameters were affected by gain, PRF, filter, and angle. Therefore it is expected that flow phantom with stenosis manufactured with an auto-injector will be utilized effectively for QA of angiostenotic diagnosis.

혈관협착의 혈류 정보와 초음파 진단장비의 품질보증을 위한 혈관협착 팬텀을 자동 주입기를 이용하여 제작하였다. 혈관협착의 진단에 효율성이 높은 파워 도플러를 이용하여 제작된 혈관 협착 팬텀의 유용성을 조사하고, 초음파 영상 파라메타에 따른 혈관협착의 정도를 확인하였다. 혈관 협착 팬텀은 직경이 각각 8mm와 2.4mm인 실리콘 튜브로 혈관협착이 70%가 되도록 제작하였으며, 인체 조직과 유사한 음향 특성을 가지고 있는 젤라틴을 이용하여 실리콘 튜브를 감싸 주었다. 평면형 탐촉자를 이용하여 측정하였을 때 정상 혈관의 직경은 대체적으로 감소되어 측정 되었으며, 협착 혈관의 직경은 증가되어 측정되었다. 이득이 60% 이상, PRF가 3000Hz 이상, 필터가 max와 같은 급격한 변화를 제외하고는 각각의 파라메타에 크게 영향을 받지 않았으며, 각도에는 영향을 받지 않는 것으로 나타났다. 또한 곡면형 탐촉자를 이용할 경우 이득, PRF, 필터, 각도등에 영향을 받는 것으로 나타났다. 본 연구에서 제작된 자동주입기를 이용한 혈관 협착 팬텀은 혈관 협착 진단의 품질보증에 유용하게 이용될 수 있을 것으로 기대된다.

Keywords

References

  1. 김현진, "간종양에 대한 색 Doppler 초음파검사와 출력 Doppler 초음파검사의 비교 연구", 이화여자대학교 대학원 석사학위논문, 1997
  2. 권병덕, 권 양, 임승철 외, "Doppler Ultrasound를 이용한 뇌기저 동맥의 혈류 속도 측정", 대한신경외과학회지, 18권, 3호, 379-388쪽, 1989
  3. Gordon l.L., "Effect of stenosis on transit-time ultrasound measurements of blood flow", Ultrasound in Medicine & Biology, vol. 21, no. 5, pp. 622-633, 1995
  4. James A. Zagzebski Essentials of ultrasound physics Mosby, Missouri, pp. 116-117, 2000
  5. Macsweeney JE, Cosgrove DO, Areson J., "Colour Doppler Energy(power) mode ultrasound", Clin. Radiol., vol. 51, no. 6, pp. 387-390, 1996 https://doi.org/10.1016/S0009-9260(96)80155-3
  6. Rubin JM, Bude RO, Corson PL, et al,, "Power Doppler US : a potentially useful alternative to mean frequency-based color Doppler US", Radiology, vol. 190, no 3, pp. 853-856, 1994 https://doi.org/10.1148/radiology.190.3.8115639
  7. von Krger M.A., Evans D.H., "Doppler ultrasound tracking instrument for monitoring blood flow velocity", Ultrasound in Medicine Biology, vol. 28, no. 11, pp. 1499-1508, 2002 https://doi.org/10.1016/S0301-5629(02)00612-9
  8. Barth R.A., Shortliffe L.D., “Normal pediatric testis : comparison of power Doppler and color Doppler US in the detection of blood flow”, Radiology, vol. 204, no. 2, pp. 380-393, 1997
  9. Golli M., Kriaa S. Said M. et al., "Intrahepatic spontaneous podosystemic venous shunt: Value of color and power Doppler sonography", J. of Clinical Utrasound, vol. 28, no. 1, pp. 47-50, 2000 https://doi.org/10.1002/(SICI)1097-0096(200001)28:1<47::AID-JCU8>3.0.CO;2-V
  10. Meyerrovvitz CB, Fleischer AC, Pickens DR. et al., "Quantification of tumor vascularity arid flow with amplitude color Doppler sonography in experimental model: preliminary results", J. Ultrasound Med., vol. 15, no. 12, pp. 827-833, 1996 https://doi.org/10.7863/jum.1996.15.12.827
  11. Ander Nilsson, Per-Ake Olofsson, Lennart Carlstedt, et al., "Color Doppler Energy : computer Analysis of color to Assess angle Dependency and Detection of Volume Flow Difference", J. Utrasound Med., vol. 16, no. 4, pp. 275-279, 1997 https://doi.org/10.7863/jum.1997.16.4.275
  12. Cameron J. Ritchie, Warren S. Edwards, Laurence A. Mack, et al., "Three -dimensional ultrasonic angiogaphy using power doppler", Ultrasound in medicine & Biology, vol. 22, no. 3, pp. 277-288, 1996 https://doi.org/10.1016/0301-5629(95)02052-7
  13. Guo z. Moreau M, Ricky DW, et al., "Quantitative investigation of in vitro flow using three-dimensional color Doppler ultrasound", Ultrasound Med Biol. vol. 21, no. 6, pp. 807-816, 1995 https://doi.org/10.1016/0301-5629(95)00007-E
  14. D. W. Rickey, P. A. Picot, D. A. Christopher and A. Fenster, “A Wall-Less Vessel Phantom For Doppler Ultrasound Studies”, Ultrasound in medicine & Biology, vol. 21, no. 9, pp. 1163-1176, 1995 https://doi.org/10.1016/0301-5629(95)00044-5
  15. Kumar V. Ramnarine, Dariush K. Nassiri, Peter R. Hoskins And Jaap Lubbers, “Validation Of a New Blood-Mimicking Fluid For Use In Doppler Flow Test Objects”, Ultrasound in Medicine & Biology, vol. 24, no. 3, pp. 451-459, 1998 https://doi.org/10.1016/S0301-5629(97)00277-9
  16. 최춘곤, "Flow Signal in 3D TOF MRA : Flow Phantom Study", 서울대학교 대학원 석사학위논문, 1995
  17. 한병인, 사진과 그림으로 배우는 초음파 뇌혈류 검사, 푸른솔, 2004
  18. Cameron J. Ritchie, Warren S. Edwards, Laurence A. Mack, et al., “Three -Dimensional Ultrasonic Angiogaphy Using Power Doppler”, Ultrasound in medicine Biology, vol. 22, no. 3, pp. 277-286, 1996 https://doi.org/10.1016/0301-5629(95)02052-7