참고문헌
- Atwood, C. L. (1969). Optimal and efficient designs of experiments, Annals of Mathematical Statistics, 40, 1570-1602 https://doi.org/10.1214/aoms/1177697374
- Borkowski, J. J. (1995a). Finding maximum G-criterion values for central composite designs on the hypercube, Communications in Statistics: Theory and Methods, 24, 2041-2058 https://doi.org/10.1080/03610929508831601
- Borkowski, J. J. (1995b). Minimum, maximum, and average spherical prediction variances for central composite and Box-Behnken Designs, Communications in Statistics: Theory and Methods, 24, 2581-2600 https://doi.org/10.1080/03610929508831634
- Borkowski, J. J. (1995c). Spherical prediction-variance properties of central composite and Box-Behnken designs, Technometrics, 37, 399-410 https://doi.org/10.2307/1269732
- Borkowski, J. J. (2003). Using a generic algorithm to generate small exact response surface designs, Journal of Probability and Statistical Science, 1, 65-88
- Borkowski, J. J. and Valeroso, E. S. (2001). Comparison of design optimality criteria of reduced models for response surface designs in the hypercube, Technometrics, 43, 468-477 https://doi.org/10.1198/00401700152672564
- Box, G. E. P. and Behnken, D. W. (1960). Some new three-level designs for the study of quantitative variables, Technometrics, 30, 1-40 https://doi.org/10.2307/1266454
- Box, G. E. P. and Draper, N. R. (1987). Empirical Model-Building and Response Surfaces, John Wiley & Sons, New York
- Box, G.E.P. and Wilson, K.B. (1951). On the experimental attainment of optimum conditions, Journal of the Royal Statistical Society, Series B, 13, 1-45
- Clyde, M. and Chaloner, K. (1996). The equivalence of constrained and weighted designs in multiple objective designs problems, Journal of the American Statistical Association, 91, 1236-1244 https://doi.org/10.2307/2291742
- Cook, R. D. and Nachtsheim, C. J. (1980). A comparison of algorithms for constructing exact D-optimal designs, Technometrics, 3, 315-324 https://doi.org/10.2307/1268315
- Cook, R. D. and Nachtsheim, C. J. (1982). Model robust, linear-optimal designs, Technometrics, 24, 49-54 https://doi.org/10.2307/1267577
- Cook, R. D. and Wong, W. K. (1994). On the equivalence of constrained and compound optimal designs, Journal of American Statistical Association, 89, 687-692 https://doi.org/10.2307/2290872
- Evans, G. W. (1984). An overview of techniques for solving multi-objective mathematical programs, Management Science, 30, 1268-1282 https://doi.org/10.1287/mnsc.30.11.1268
- Fedorov, V. V. (1972). Theory of Optimal Experiments, Academic Press, New York
- Forrest, S. (1993). Genetic algorithms: Principles of natural selection applied to computation, Science, 261, 872-878 https://doi.org/10.1126/science.8346439
- Haines, L. M. (1987). The application of the annealing algorithm to the construction of exact optimal designs for linear regression models, Technometrics, 37, 439-447 https://doi.org/10.2307/1269455
- Hamada, M., Martz, H. F., Reese, C. S. and Wilson, A. G. (2001). Finding near-optimal Bayesian experimental designs via genetic algorithms, The American Statistician, 55, 175-181 https://doi.org/10.1198/000313001317098121
- Hartley, H. O. (1959). Smallest composite designs for quadratic response surfaces, Biometric, 15, 611-624 https://doi.org/10.2307/2527658
- Heredia-Langner, A., Carlyle, W. M., Montgomery, D. C., Borror, C. M. and Runger, G. C. (2003). genetic algorithm for the construction of D-optimal designs, Journal of Quality Technology, 35, 28-46
- Hoke, A. T. (1974). EconomicaI second-order designs based on irregular fractions of the factorial, Technometrics, 16, 375-384 https://doi.org/10.2307/1267667
- Huang, Y. C. and Wong, W. K. (1998). Sequential construction of multiple-objective optimal designs, Biometrics, 54, 1388-1397 https://doi.org/10.2307/2533665
- JMP Software (2004). Version JMP 5.2. Cary, NC
- Karlin, S. and Studden, W. J. (1966). Optimal experimental designs, Annals of Mathematical Statistics, 37, 783-815 https://doi.org/10.1214/aoms/1177699361
- Kiefer. J. (1959). Optimum experimental designs, Journal of the Royal Statistical Society, Series B, 21, 272-319
- Kiefer, J. (1961). Optimum designs in regression problems, Annals of Mathematical Statistics, 32, 298-325 https://doi.org/10.1214/aoms/1177705160
- Kiefer, J. and Wolfowitz, J. (1959). Optimum designs in regression problems, Annals of Mathematical Statistics, 30, 271-294 https://doi.org/10.1214/aoms/1177706252
- Lauter, E. (1974). Experimental planning in a class of models, Mathematische Operarionsforsh und Statistics, 5, 673-708
- Lauter, E. (1976). Optimal multipurpose designs for regression models, Mathematische Operations-forsh und Statistics, 7, 51-68 https://doi.org/10.1080/02331887608801276
- Lee, C. M. S. (1988). Constrained optimal designs, Journal of Statistical Planning and Inference, 18 377-389 https://doi.org/10.1016/0378-3758(88)90114-0
- Lucas. J. M. (1974). Optimum composite designs, Technometrics, 16, 561-567 https://doi.org/10.2307/1267608
- Lucas, J. M. (1976). Which response surface is best, Technometrics, 18, 411-417 https://doi.org/10.2307/1268656
- Meyer, R. K. and Nachtsheim, C. J. (1995). The coordinate-exchange algorithm for constructing exact optimal experimental designs, Technometrics, 37, 60-67 https://doi.org/10.2307/1269153
- Mitchell, T. J. (1974). An algorithm for the construction of D-optimal experimental designs, Techno-metrics, 16, 203-210 https://doi.org/10.2307/1267940
- Mitchell, T. J. and Bayne, C. K. (1978). D-optimal fractions of three-level factorial designs, Techno-metrics, 20, 369-380 https://doi.org/10.2307/1267635
- Montepiedra, G., Myers, D. and Yeh, A. B. (1998). Application of genetic algorithms to the construc-tion of exact D-optimal designs, Journal of Applied Statistics, 25, 817-826 https://doi.org/10.1080/02664769822800
- Myers, R. H. and Montgomery, D. C. (2002). Response Surface Methodology: Process and Product Optimization Using Designed Experiments, John Wiley & Sons, New York
- Myers, R. H., Vining, G. G., Giovannitti-Jensen, A. and Myers, S. L. (1992). Variance dispersion properties of second order response surface designs, Journal of Quality Technology, 24, 1-11
- Notz, W. (1982). Minimal point second order designs, Journal of Statistical Planning and Inference, 6, 47-58 https://doi.org/10.1016/0378-3758(82)90055-6
- Park, Y. J., Richardson, D. E., Montgomery, D. C., OzoI-Godfrey, A., Borror, C. M. and Anderson-Cook, C. M. (2005). Prediction variance properties of second-order designs for cuboidal regions, Journal of Quality Technology, 37, 253-266
- Stigler, S. M. (1971). Optimal experimental design for polynomial regression, Journal of the Ameri-can Statistical Association, 66, 311-318 https://doi.org/10.2307/2283928
- St. John, R. C. and Draper, N. R. (1975). D-optimality for regression designs: A review, Technometrics, 17, 15-23 https://doi.org/10.2307/1267995
- Welch, W. J. (1982). Branch and bound search for experimental designs based on D-optimality and other criteria, Technomerrics, 1, 41-48 https://doi.org/10.2307/1267576
- Wynn, H. P. (1970). The sequential generation of D-optimum experimental designs, Annals of Mathematical Statistics, 41, 1655-1664 https://doi.org/10.1214/aoms/1177696809
피인용 문헌
- A Case Study to Select an Optimal Split-Plot Design for a Mixture-Process Experiment Based on Multiple Objectives vol.26, pp.4, 2014, https://doi.org/10.1080/08982112.2014.887102