DOI QR코드

DOI QR Code

Effect of Motor Training on Hippocampus after Diffuse Axonal Injury in the Rats

운동훈련이 미만성 축삭손상을 일으킨 흰쥐의 해마에 미치는 영향

  • 천송희 (대구대학교 물리치료학과)
  • Published : 2009.01.28

Abstract

Diffuse axonal injury(DAI) is a common form of traumatic brain injury and thought to be a major contributor to cognitive dysfunction. Physical activity has been shown to beneficial effects on physical health and influences in hippocampus which is an important location for memory and learning. The purpose of this study was to investigate the effect of motor training on motor performance and axonal regeneration in hippocampus through the immunoreactivity of GAP-43 after diffuse axonal injury in the rats. The experimental groups were applied motor training(beam-walking, rotarod, and Morris water maze) but control groups were not. The time performing the motor tasks and GAP-43 immunohistochemistry were used for the result of axonal recovery. There were meaningful differences between experimental groups and control groups on motor performance and GAP-43 immunohistochemistry. The control groups showed increasing tendency with the lapse of time, but experimental groups showed higher. Therefore, Motor training after DAI improve motor outcomes which are associated with dynamically altered immunoreactivity of GAP-43 in axonal injury regions, particularly hippocampus, and that is related with axonal regeneration.

미만성 축삭손상(diffuse axonal injury)은 외상성 뇌손상의 일반적인 형태이며, 인지 장애의 주요 원인으로 생각되어 진다. 흔들린 아기 증후군(shaken baby syndrome)과 같이 뇌에 전단력이 심하게 가해졌을 때도 신체 장애 뿐만 아니라 인지 장애가 특징적으로 나타난다. 신체 활동은 건강 증진과 더불어 기억 및 학습과 관련된 해마의 기능 향상에도 영향을 미친다. 본 연구의 목적은 흰쥐를 대상으로 미만성 축삭 손상을 일으킨 후 반복적인 운동 훈련을 통해 운동 수행력을 관찰하고 해마에서 GAP-43의 발현을 통해 축삭 재생의 변화를 관찰하는 것이었다. 실험동물은 운동 훈련을 적용시키는 실험군과 대조군으로 구분하였고, 각각의 군을 다시 1일, 7일 및 14일군으로 구분하였다. 그 결과, 운동 훈련을 적용시킨 실험군이 대조군보다 운동 수행력의 향상이 더 유의했으며, 해마에서 GAP-43의 발현도 같은 양상을 나타냈다. 이러한 차이는 7일군과 14일군보다 1일군과 7일군 사이에 더 크게 나타났다. 그러므로 미만성 축삭손상 후 운동 훈련은 운동 수행력의 향상에 영향을 미치며, 인지와 관련된 해마의 구조적 변화도 야기 시키는 것으로 생각된다.

Keywords

References

  1. J. T. Povlishock, R. L. Hayes, and M. E. Michel, "Workshop on animal models of traumatic brain injury," J Neurotrauma, Vol.11, No.6, pp.723-732, 1994. https://doi.org/10.1089/neu.1994.11.723
  2. T. A. Gennarelli, "Animate models of human head injury," J Neurotraum, Vol.11, No.4, pp.357-368, 1994. https://doi.org/10.1089/neu.1994.11.357
  3. W. L. Maxwell, J. T. Povlishock, and D. L. Graham, "A mechanistic anlysis of nondisruptive axonal injury: a review," J Neurotrauma, Vol.14, No.7, pp.419-440, 1997. https://doi.org/10.1089/neu.1997.14.419
  4. G. A. Ryan, A. J. McLean, A. T. Vilenius, C. N. Kloeden, D. A. Simpson, P. C. Blumbergs, and G. Scott, "Brain injury patterns in fatally injured pedestrians," J Trauma, Vol.36, No.4, pp.469-476, 1994.
  5. D. I. Katz and M. P. Alexander, "Traumatic brain injury: predicting course of recovery and outcome for patients admitted to rehabilitation," Arch Neurol, Vol.51, No.7, pp.661-670, 1994. https://doi.org/10.1001/archneur.1994.00540190041013
  6. C. L. Coe, M. Kramer, B. Czeh, E. Gould, A. J. Reeves, C. Kirschbaum, and E. Fuchs, "Prenatal stress diminishes neurogenesis in the dentate gyrus of juvenile rhesus monkeys," Biol Psychiatry, Vol.54, No.10, pp.1025-1034, 2003. https://doi.org/10.1016/S0006-3223(03)00698-X
  7. E. D. Bigler, "The lesions in traumatic brain injury: implications for clinical neuropsychology," Achieves of Clinical Neuropsychology, Vol.16, No.2, pp.95-131, 2001. https://doi.org/10.1016/S0887-6177(00)00095-0
  8. E. H. Pettus, C. W. Christman, M. L. Giebel, and J. T. Povlishock, "Traumatically induced altered membrane permeability: its relationship to traumatically induced reactive axonal change," J Neurotrauma, Vol.11, No.5, pp.507-522, 1994. https://doi.org/10.1089/neu.1994.11.507
  9. W. Wu, "Potential roles of gene expression change in adult rat spinal motoneurons following axonal injury, a comparison among c-jun, low-affinity nerve growth factor receptor(LNGFR) and nitric oxide synthase(NOS)," Exp Neurol, Vol.141, No.2 pp.190-200, 1996. https://doi.org/10.1006/exnr.1996.0153
  10. B. B. Johansson, "Brain plasticity and stroke rehabilitation," Stroke, Vol.31, No.1, pp.223-230. 2000. https://doi.org/10.1161/01.STR.31.1.223
  11. L. I. Benowitz and A. Routtenberg, "GAP-43: an intrinsic determinant of neuronal development and plasticity," Trends Neurosci, Vol.20, No.2, pp.84-91, 1997. https://doi.org/10.1016/S0166-2236(96)10072-2
  12. H. Yamanouchi, M. Mizuguchi, A. Oka, S. Takashima, L. E. Becker, M. Eguchi, and Y. Nakazato, "Enhanced GAP-43 gene expression in cortical dysplasia," Neuroreport, Vol.11, No.9, pp.1815-1819, 2000. https://doi.org/10.1097/00001756-200006260-00004
  13. H. van Praag, T. Shubert, C. Zhao, and F. H. Gage, "Exercise enhances learning and hippocampal neurogenesis in aged mice," J Neurosci, Vol.25, No.38, pp.8680-8685, 2005. https://doi.org/10.1523/JNEUROSCI.1731-05.2005
  14. J. L. Tillerson, A. D. Cohen, J. Philhower, G. W. Miller, M. J. Zigmond, and T. Schallert, "Forced limb-use effects on the behavioral and neurochemical effects of 6-hydroxydopamine," J Neurosci, Vol.21, No.12, pp.4427-4435, 2001.
  15. Y. Geinisman, "Structural synaptic modifications associated with hippocampal LTP and behavioral learning," Cereb Cortex, Vol.10, No.10, pp.952-962, 2000. https://doi.org/10.1093/cercor/10.10.952
  16. C. W. Cotman and N. C. Berchtold, "Exercise: a behavioral intervention to enhance brain health and plasticity," Trends Neurosci, Vol.25, No.6, pp.295-301, 2002. https://doi.org/10.1016/S0166-2236(02)02143-4
  17. A. Marmarou, M. A. Foda, W. van den Brink, J. Campbell, H. Kita, and K. Demetriadou, "A new model of diffuse brain injury in rats. Part I: Pathophysiology and biomechanics," J Neurosurg, Vol.80, No.2, pp.291-300, 1994. https://doi.org/10.3171/jns.1994.80.2.0291
  18. L. B. Goldstein and J. N. Davis, "Beam-Walking in rats: Studies towards developing an animal model of functional recovery after brain injury," J Neurosci Methods, Vol.31, No.2, pp.101-107, 1990. https://doi.org/10.1016/0165-0270(90)90154-8
  19. R. J. Hamm, B. R. Pike, D. M. O'Dell, B. G. Lyeth, and L. W. Jenkins, "The rotarod test: An evaluation of its effectiveness in assessing motor deficits following traumatic brain injury," J Neurotrauma, Vol.11, No.2, pp.187-196, 1994. https://doi.org/10.1089/neu.1994.11.187
  20. D. Champagne, J. Dupuy, J. Rochford, and J. Poirier, "Apolipoprotein E knockout mice display procedural deficits in themorris water maze: analysis of learning strategies in three versions of the task," Neuroscience, Vol.114, No.3, pp.641-654, 2002. https://doi.org/10.1016/S0306-4522(02)00313-5
  21. Y. Chen, S. Constantini, V. Trembovler, M. Weinstock, and E. Shohami, "An experimental model of closed head injury in mice: pathophysiology, histopathology, and cognitive deficits," J Neurotrauma, Vol.13, No.10, pp.557-568, 1996.
  22. C. W. Christman, M. S. Grady, S. A. Walker, K. L. Holloway, and J. T. Poavlishock, "Ultrastructure studies of diffuse axonal injury in humans," J Neurotrauma, Vol.11, No.2, pp.173-186, 1994. https://doi.org/10.1089/neu.1994.11.173
  23. L. D. Lehmkuhl, K. M. Hall, N. Mann, and W. A. Gordon, "Factors that influence costs and length of stay of persons with traumatic brain injury in acute care and inpatient rehabilitation," J Head Trauma Rehabil, Vol.8, No.2, pp.88-100, 1993. https://doi.org/10.1097/00001199-199308020-00010
  24. I. Cernak, R. Vink, D. N. Zapple, M. I. Cruz, F. Ahmed, T. Chang, S. T. Fricke, and A. I. Faden, "The pathobiology of moderate diffuse traumatic brain injury as identified using a new experimental model of injury in rats," Neurobiol Dis, Vol.17, No.1, pp.29-43, 2004. https://doi.org/10.1016/j.nbd.2004.05.011
  25. J. M. Meythaler, J. D. Peduzzi, E. Eleftheriou, and T. A. Novack, "Current Concepts: Diffuse Axonal Injury-Associated Traumatic Brain Injury," Arch Phys Med Rehabil, Vol.82, No.10, pp.1461-1471, 2001. https://doi.org/10.1053/apmr.2001.25137
  26. D. H. Smith, X. H. Chen, B. N. Xu, T. K. McIntosh, T. A. Gennarelli, and D. F. Meaney, "Characterization of diffuse axonal pathology and selective hippocampal damage following inertial brain trauma in the pig," J Neuropathol Exp Neurol, Vol.56, No.7, pp.822-834, 1997. https://doi.org/10.1097/00005072-199756070-00009
  27. S. L. Smith, P. K. Andrus, D. D. Gleason, and E. D. Hall, "Infant rat model of the shaken baby syndrome: preliminary characterization and evidence for the role of free radicals in cortical hemorrhaging and progressive neuronal degeneration," J Neurotrauma, Vol.15, No.9, pp.693-705, 1998. https://doi.org/10.1089/neu.1998.15.693
  28. N. L. van Meeteren, J. H. Brakkee, F. P. Hamers, P. J. Helders, and W. H. Gispen, "Exercise training improves functional recovery and motor nerve condition velocity after sciatic nerve crush lesion in the rat," Arch Phys Med Rehabil, Vol.78, No.1, pp.70-77, 1997. https://doi.org/10.1016/S0003-9993(97)90013-7
  29. A. Kami, G. Meyer, P. Jezzard, M. M. Adams, R. Turner, and L. G. Ungerleider, "Functional MRI evidence for adult motor cortex plasticity during motor skill learning," Nature, Vol.377, No.6545, pp.155-158, 1995. https://doi.org/10.1038/377155a0
  30. C. E. Hulsebosch, D. S. Dewitt, L. W. Jenkins, and D. S. Prough, "Traumatic brain injury in rats results in increased expression of Gap-43 that correlates with behavioral recovery," Neurosci lett, Vol.255, No.2, pp.83-86, 1998. https://doi.org/10.1016/S0304-3940(98)00712-5
  31. S. M. Strittmatter, C. Fankhauser, P. L. Huang, H. Mashimo, and M. C. Fishman, "Neuronal pathfinding is abnormal in mice lacking the neuronal growth cone protein GAP-43," Cell, Vol.80, No.3, pp.445-452, 1995. https://doi.org/10.1016/0092-8674(95)90495-6
  32. D. R. Kaplan and F. D. Miller, "Neurotrophin signal transduction in the nerve system," Curr Opin Neurobiol, Vol.10, No.3, pp.381-391, 2000. https://doi.org/10.1016/S0959-4388(00)00092-1
  33. G. L. Li, M. Farooque, A. Holtz, and Y. Olsson, "Increased expression of growth-associated protein 43 immunoreactivity in axons following compression trauma to rat spinal cord," Acta Neuropathol, Vol.92, No.1, pp.19-26, 1996. https://doi.org/10.1007/s004010050484
  34. A. Oladehin and R. S. Waters, "Location and distribution of Fos protein expression in rat hippocampus following acute moderate aerobic exercise," Exp brain Res, Vol.137, No.1, pp.26-35, 2001. https://doi.org/10.1007/s002210000634
  35. J. L. Trejo, E. Carro, and I. Torres-Aleman, "Circulating insulin-like growth factor I mediates exercise-induced increases in the number of new neurons in the adult hippocampus," J Neurosci, Vol.21, No.5, pp.1628-1634, 2001.