References
- Y. Ito, "Approximation of continuous functions on rdby linear combinations of shifted rotations of a sigmoid function with and without scaling," Neural Networks, Vol.5, pp.105-115, 1992. https://doi.org/10.1016/S0893-6080(05)80009-7
- H. White, "Learning in artificial neural networks: a statistical perspective," Neural Computation, Vol.1, pp.425-464, 1989. https://doi.org/10.1162/neco.1989.1.4.425
- 오상훈, "다층퍼셉트론의 잡음강건성 분석 및 향상 방법," 한국콘텐츠학회 논문지, 제9권, 제1호.
- Y. Lee, S.-H. Oh, and M. W. Kim, "An analysis of premature saturation in back-propagation learning," Neural networks, Vol.6, pp.719-728, 1993. https://doi.org/10.1016/S0893-6080(05)80116-9
- A. van Ooyen and B. Nienhuis, "Improving the convgence of the back-propagation algorithm," Neural Networks, Vol.5, pp.465-471, 1992. https://doi.org/10.1016/0893-6080(92)90008-7
- S.-H. Oh, "Improving the error back-propagation algorithm with a modified error function," IEEE Trans. Neural Networks, Vol.8, pp.799-803, 1997. https://doi.org/10.1109/72.572117
- S.-H. Oh and S.-Y. Lee, "An adaptive learning rate with limited error signals for training of multilayer perceptrons," ETRI Journal, Vol.22, No.3, pp.10-18, 2000(9). https://doi.org/10.4218/etrij.00.0100.0302
- J. B. Hampshire II and A. H. Waibel, "A novel objective function for improved phoneme recognirtion using time-delay neural networks," IEEE Trans. Neural Networks, Vol.1, pp.216-228, 1990(6). https://doi.org/10.1109/72.80233
- B. B. Chaudhuri and U. Bhattacharya, "Efficient training and improved performance of multilayer perceptron in pattern classification," Neurocomputing, Vol.34, pp.11-27, 2000. https://doi.org/10.1016/S0925-2312(00)00305-2
- K.-Y. Park and S.-Y. Lee, "Out-of vocabulary rejection based on selective attention model," Neural Processing Letters, Vol.12, pp.41-48, 2000. https://doi.org/10.1023/A:1009617830276
- F. J. Owens, G. H. Zheng, and D. A. Irvine, "A multi-output-layer perceptron," Neural Computation & Applications, Vol.4, pp.10-20, 1996. https://doi.org/10.1007/BF01413865
- T. P. Vogl, J. K. Mangis, A. K. Rigler, W. T. Zink, and D. L. Alkon, "Accelerating the convergence of the back-propagation method," Biol. Cybern., Vol.59, pp.257-263, 1988. https://doi.org/10.1007/BF00332914
- J. Y. F. Yam and W. S. Chow, "Extended least squares based algorithm for training feedfoward networks," IEEE Trans. Neural Networks, Vol.8, pp.806-810, 1997. https://doi.org/10.1109/72.572119
- R. Paris, E. D. Di Claudio, G. Orlandi, "A generalized learning paradigm exploiting the structure of feedforward neural networks," IEEE Trans. Neural Networks, Vol.7, pp.1450-1459, 1996. https://doi.org/10.1109/72.548172
- C. Yu, M. T. Manry, J. Li, and P. L. Narasimha, "An efficient hidden layer training method for multilayer perceptron," Neurocomputing, Vol.70, pp.525-535, 2006. https://doi.org/10.1016/j.neucom.2005.11.008
- S.-H. Oh and S.-Y. Lee, "A new error function at hidden layers for fast training of multilayer perceptrons," IEEE Trans. Neural Networks, Vol.10, pp.960-964, 1999. https://doi.org/10.1109/72.774272
- J.-H. Jeong, H. Kim, D.-S. Kim, and S.-Y. Lee, "Speaker adaptation based on judge neural networks for real world implementations of voice-command systems," Information Science, Vol.123, pp.13-24, 2000. https://doi.org/10.1016/S0020-0255(99)00107-3
- D.-S. Kim, S.-Y. Lee, and R.-M. Kil, "Auditory processig of speech signals for robust speech recognition in real-worldnoisy environments," IEEE Trans. Speech and Audio Processing, Vol.7, pp.55-69, 1999. https://doi.org/10.1109/89.736331
- J. J. Hull, "A database for handwritten text recognition research," IEEE Trans. Pat. Ana. Mach. Int., Vol.16, pp.550-554, 1994. https://doi.org/10.1109/34.291440