Microplasma-Jet Device for Bio-medical Application

바이오-메디컬 응용을 위한 마이크로 플라즈마 분사 소자

  • Published : 2009.12.01

Abstract

This paper presents an atmospheric microplasma-jet device for bio~medical application. The microplasma-jet device consists of four components; a thin Ni anode, porous alumina insulator, a stainless steel cathode and an aluminum case. The anode has 8 holes, and hole diameter and depth are $200 {\mu}m$ and $60 {\mu}m$, respectively. The discharge test was performed in atmospheric pressure using nitrogen gas and AC voltage at the optimum gas flow rate of 4 Vmin. The plasma-jet is ejected stably for the input voltage ranging from 5.5 to $9.5 kV_{p-p}$. The plasma becomes dense as the input voltage increases, which was verified by the hydrophilicity change of PMMA surface treated by the plasma. The temperature increasement of the aluminum film exposed to plasma-jet illustrates that the micro plasma-jet device is feasible for bio-medical application.

Keywords

References

  1. G. Fridman, M. Peddinghaus, H. Ayan, A. Fridman, M. Balasubramanian, A Gutsol, A. Brooks and G. Friedman, 'Floating Electrode Dielectric Barrier Discharge Plasma in Air Promoting Apoptotic Behavior in Melanoma Skin Cancer Cell Lines', Plasma Chem. Plasma Process. Vol. 27, p. 163, 2007 https://doi.org/10.1007/s11090-007-9048-4
  2. S. U. Kalghatgi, G. Fridman, M. Cooper, G. Nagaraj, M. Peddinghaus, M. Balasubramanian, V. N. Vasilets, A. F. Gutsol, A. Fridman and G. Friedman, 'Mechanism of Blood Coagulation by Nonthermal Atmospheric Pressure Dielectric Barrier Discharge Plasma', IEEE Trans. Plasma Sci., Vol. 35, p. 1559, 2007 https://doi.org/10.1109/TPS.2007.905953
  3. E. Stoffels, A. J. M. Roks and L. E. Deelman, 'Delayed Effects of Cold Atmospheric Plasma on Vascular Cells', Plasma Process. Polym., Vol. 5, p. 599, 2008 https://doi.org/10.1002/ppap.200800028
  4. E. E. Kunhardt, 'Generation of large-volume, atmospheric-pressure, nonequilibrium plasmas', IEEE Trans. Plasma Sci., Vol. 28, p. 189, 2000 https://doi.org/10.1109/27.842901
  5. H. Y. Fan, 'The Transition from Glow Discharge to Arc', Phys. Rev., Vol. 55, p. 769, 1939 https://doi.org/10.1103/PhysRev.55.769
  6. W. A. Gambling and H. Edels, 'The high-pressure glow discharge in air', Br. J. Appl. Phys., Vol. 5, p.36, 1954 https://doi.org/10.1088/0508-3443/5/1/309
  7. W. A. Gambling and H. Edels, 'The properties of high-pressure steady-state discharges in hydrogen', Br. J. Appl. Phys., Vol. 7, p. 376, 1956 https://doi.org/10.1088/0508-3443/7/10/309
  8. F. Pachen, 'Hohlkathoden-Effekt', Ann. Phys. - Berlin, Vol. 50, p. 901, 1916
  9. Kang-il Kim, Geunyoung Kim, Yong Cheol Hong, and Sang Sik Yang, 'Atmospheric Microplasma-Jet Device for Bio-Medical Application', 11th Korean MEMS Conf., p, 201, 2009
  10. W. Pan, W Zhang, W. Ma, and C. Wu, 'Characteristics of Argon Laminar DC Plasma Jet at Atmospheric Pressure', Plasma Chem. Plasma Process. Vol. 22, p. 271, 2002 https://doi.org/10.1023/A:1014899510362
  11. N. T. Zervas, and A. Kuwayama, 'Pathological characteristics of experimental thermal lesions', J. Neurosurg., Vol. 37, p. 418, 1972 https://doi.org/10.3171/jns.1972.37.4.0418