DOI QR코드

DOI QR Code

Experimental Study on Artificial Crack Healing for Concrete Using Electrochemical Deposition Method

전기화학적 전착기법을 활용한 콘크리트의 인공 균열치유에 관한 실험적 연구

  • Lee, Chang-Hong (Dept. of Civil and Environmental Engineering, Yonsei University) ;
  • Song, Ha-Won (Dept. of Civil and Environmental Engineering, Yonsei University)
  • 이창홍 (연세대학교 사회환경시스템공학부) ;
  • 송하원 (연세대학교 사회환경시스템공학부)
  • Published : 2009.08.31

Abstract

In this study, autogenous crack healing and artificial crack healing using electrochemical electro deposition method were conducted to compare in the aspects of corrosion monitoring. Furthermore, the analysis of impressed voltage characteristics, galvanic current and linear polarization resistance comparison, and photo image processing technique were performed for quantitative comparisons of healing ratio. As a result, it was found that, in view of impressed voltage of artificial crack healing, the measured voltage was increased as time goes by. From the galvanic test results of artificial crack healing, the current vs. potential distribution value were formed widely in comparison with autogenous crack healing. In this point, it was shown that artificial crack healing has more eleatic resistance capacity than autogenous crack healing technique. Finally, it was found that artificial crack healing was 1.63 times higher than autogenous healing in view of crack healing ratio.

이 연구에서는 인공균열치유방법으로서 전기화학적 전착기법을 활용한 균열치유에 관한 실험연구를 통해 부 식모니터링의 관점에서 자기균열치유 및 인공균열치유의 비교분석을 수행하였다. 이를 위해 가압전류의 특성 분석, 갈 바닉 전류의 비교분석, 선형분극저항의 비교분석 및 치유전과 치유후의 균열 치유 향상도를 사진화상 분석기법을 통한 정량화 비교로서 수행하였다. 연구결과로부터, 가압전류 모니터링에서 고정 가압전류에 따른 전압의 결과는 시간의 경 과에 따라 일정부분까지 증가하다가 수렴하는 것을 알 수 있었고, 갈바닉 전류 측정에 의해 인공균열치유의 경우가 자 기균열치유에 비해 더욱 넓은 범위의 전류 vs. 전압 범위 분포를 보여 부식저항성을 안정화하고 있음도 확인하였다. 한 편 사진 화상 분석기법을 통해서는 인공균열치유 기법의 경우가 약 1.63배 자기균열치유에 비해 균열치유 향상효과를 가지는 것으로 분석되었다.

Keywords

References

  1. Song, H. W., Lee C. H., and Ann, K. Y., “Factors Influencing Chloride Transport in Concrete Structures Exposed to Marine Environment,” Cem. Concr. Comp., Vol. 30, I. 2, 2008, pp. 113-121 https://doi.org/10.1016/j.cemconcomp.2007.09.005
  2. Song, H. W., Lee, C. H., Jung, M. S., and Ann, K. Y., “Development of Chloride Binding Capacity in Cement Pastes and the Influence of the pH of Hydration Products,”Can Civ Eng J., Vol. 35, No. 12, 2008, pp. 1427-1434 https://doi.org/10.1139/L08-089
  3. Ann, K. Y., Song, H. W., Lee, C. H., and Lee, K. C., “Buildup of Surface Chloride and Its Influence on Corrosion Initiation Time of Steel in Concrete,” EASEC-10, The Tenth East Asia-Pacific Conference on Structural Engineering & Construction, Bangkok, Thai, August 3-5, 2006, pp. 767-772.-1434.
  4. Song, H. W., Ann, K. Y., Lee, C. H., and Lee, K. C., “Corrosion of Steel in Mortars Containing OPC, PFA, GGBS and SF with Chlorides in Cast,” The 4th Civil Engineering Conference in the Asian Region, Taipei, Taiwan, June 25-28. 2007, pp.71-78
  5. Song, H. W., Ann, K. Y., and Kim, T. S., “Assessing the Resistance of Cementitious Binders to Chloride-Induced Corrosion of Steel Embedment Via Electrochemical and Microstructural Studies,” International Corrosion Engineering Conference, May 20-24, 2007, pp.72-80
  6. Saraswathy, V. and Song, H. W., “Evaluation of Corrosion Resistance of Portland Pozzolana Cement and Fly Ash Blended Cements in Pre-Cracked Reinforced Concrete Slabs under Accelerated Testing Conditions,” Mat. Chem. Phy., Vol. 104, No. 2-3, 2007, pp. 356-361 https://doi.org/10.1016/j.matchemphys.2007.03.033
  7. Song, H. W. and Saraswathy. V., “Analysis of Corrosion Resistance of Inhibitors in Concrete Using Electrochemical Studies,” Met. and Mat. Int., Vol. 12, No. 4, 2006, pp. 323-329 https://doi.org/10.1007/BF03027549
  8. Saraswathy. V. and Song, H. W., “Performance of Galvanized and Stainless Steel Rebars in Concrete under Macrocell Corrosion Conditions,” Mat. Corros., Vol. 56, No. 10, 2005, pp. 685-691 https://doi.org/10.1002/maco.200503888
  9. Ann, K. Y. and Song, H. W., “Chloride Threshold Level for Corrosion of Steel in Concrete,” Corros. Sci., Vol. 49, 2007, pp. 4113-4133 https://doi.org/10.1016/j.corsci.2007.05.007
  10. Song, H. W., Kwon, S. J., Byun, K. J., and Park, C. K., “Predicting Carbonation in Early-Aged Cracked Concrete,” Cem. Concre. Res, Vol. 36, 2006, pp. 979-989 https://doi.org/10.1016/j.cemconres.2005.12.019
  11. ACI Committee Report No.2241.R-84, “Causes Evaluation and Repair of Cracks in Concrete Structures,” ACI J., May-June, 1984, pp. 211-230
  12. Jacobsen, S., Marchand, J., and Boisvert, L., “Effect of Cracking and Healing on Chloride Transport in OPC Concrete,” Cem. Concr. Res., Vol. 26, No. 6, 1996, pp. 869-881 https://doi.org/10.1016/0008-8846(96)00072-5
  13. Samaha, H. R. and Hover, K. C., “Influence of Micro Cracking on the Mass Transport Properties of Concrete,” ACI. Mater. J., Vol. 89, No. 4, 1992, pp. 416-424
  14. Lim, C. C., Gowripalan, N., and Srivivatnanon, “Micro Cracking and Chloride Permeability of Concrete under Uniaxial Compression,” Cem. Concr. Compos., Vol. 2, No. 5, 2000, pp. 353-362
  15. Aldea, C. M., Shah, S. P., and Karr, A., “Effect of Cracking on Water and Chloride Permeability of Concrete,” J. Mater. Civ. Eng., Vol. 11, No. 1, 1999, pp. 181-197 https://doi.org/10.1061/(ASCE)0899-1561(1999)11:3(181)
  16. Hannant, D. J. and Keer, J. G., “Autogenous Healing of Thin Cement Based Sheets,” Cem. Conc. Res., Vol. 13, No. 3, 1983, pp. 357-365 https://doi.org/10.1016/0008-8846(83)90035-2
  17. Edvardsen, C., “Water Permeability and Autogenous Healing of Cracks in Concrete,” ACI Mat. J., Vol. 96, No. 4, 1999, pp. 448-454
  18. Laur, K. R. and Slate, F. O., “Autogenous Healing of Cement Paste,” ACI J., Proc. Vol. 27, No. 10, 1956, pp. 1083-1098
  19. Neville, A., “Autogenous Healing-a Concrete Miracle?,” Concrete International, No. 11, 2002, pp. 76-82
  20. Jacobsen, S. and Sellevold, E., “Self Healing of High Strength Concrete after Deterioration by Freeze/Thaw,” Cem. Concr. Res., Vol. 26, No. 1, 1996, pp. 55-62 https://doi.org/10.1016/0008-8846(95)00179-4
  21. Liu, X. Y., Yao, W., Zheng, X. F., and Wu J. P., “Experimental Study on Self-Healing Performance of Concrete,” Chin. J. Build. Mater., Vol. 8, No. 2, 2005, pp. 184-188
  22. LiH, X., Tang, C. A., Zeng, S. H., and Li, S. N., “Research on Self-Healing of Concrete Cracks,” Chin. J. Wuhan. Univ. Technol., Vol. 26, No. 3, 2004, pp. 27-29
  23. Wieland, R. and Michaela, B., “Autogenous Healing and Reinforcement Corrosion of Water-Penetrated Separation Cracks in Reinforced Concrete,” Nucl. Eng. Des., Vol. 179, No. 2, 1998, pp. 191-200 https://doi.org/10.1016/S0029-5493(97)00266-5
  24. Reinhardt, H. W. and Jooss, M., “Permeability and Self-Healing of Cracked Concrete as a Function of Temperature and Crack Width,” Cem. Concr. Res., Vol. 33, No. 4, 2003, pp. 981-985 https://doi.org/10.1016/S0008-8846(02)01099-2
  25. Ramezanianpour, A. A. and Malhotra, V. M., “Effect of Curing on the Compressive Strength Resistance to Chloride- Ion Penetration and Porosity of Concretes Incorporating Slag, Fly Ash or Silica Fume,” Cem. Concr. Comp., Vol. 17, No. 2, 1995, pp. 125-133 https://doi.org/10.1016/0958-9465(95)00005-W
  26. Ballim, Y., “Curing and the Durability of OPC, Fly Ash and Blast-Furnace Slag Concretes,” Mat. Struct., Vol. 26, No. 158, 1993, pp. 238-244 https://doi.org/10.1007/BF02472617
  27. El-Sakhawy, N. R., El-Dien H. S., Ahmed, M. E., and Bendary, K. A., “Influence of Curing on Durability Performance of Concrete,” Mag. Concre. Res., Vol. 51, No. 5, 1999, pp. 309-318 https://doi.org/10.1680/macr.1999.51.5.309
  28. Dry, C., “Matrix Cracking Repair and Filling Using Active and Passive Modes for Smart Timed Release of Chemicals from Fibers into Cement Matrices Smart,” Mater. Struct., Vol. 3, No. 2, 1994, pp. 118-123 https://doi.org/10.1088/0964-1726/3/2/006
  29. Ryu, J. S. and Otsuki, N., “Crack Closure of Reinforced Concrete by Electro Deposition Technique,” Cem. Concr. Res., Vol. 32, No. 1, 2002, pp. 159-164 https://doi.org/10.1016/S0008-8846(01)00650-0
  30. Ryu, J. S. and Otsuki, N., “Electro Deposition as a Rehabilitation Method for Concrete Materials,” J. Civ. Eng., Vol. 31, No. 1, 2004, pp. 776-781 https://doi.org/10.1139/l04-044
  31. Ryu, J. S. and Otsuki, N., “Application of Electrochemical Techniques for the Control of Cracks and Steel Corrosion in Concrete,” J. Appl. Electrochem, Vol. 32, No. 6, 2002, pp. 635-639 https://doi.org/10.1023/A:1020143229044

Cited by

  1. A Study on Economically-Efficient Binder Combination of 80MPa Ultra High Strength Concrete vol.3, pp.1, 2015, https://doi.org/10.14190/JRCR.2015.3.1.064