DOI QR코드

DOI QR Code

Development of a Predictive Growth Model of Staphylococcus aureus and Shelf-life Estimation of Cooked Mung Bean Sprouts Served in School Foodservice Operations

학교급식에서 제공되는 숙주나물의 Staphylococcus aureus 성장예측모델 개발 및 섭취유효기간 설정

  • Park, Hyoung-Su (Dept. of Food Science & Technology, Chung-Ang University) ;
  • Kim, Min-Young (Dept. of Food Science & Technology, Chung-Ang University) ;
  • Jeong, Hyun-Suk (Dept. of Food & Nutrition, Yeungnam University) ;
  • Park, Ki-Hwan (Dept. of Food Science & Technology, Chung-Ang University) ;
  • Ryu, Kyung (Dept. of Food & Nutrition, Yeungnam University)
  • 박형수 (중앙대학교 식품공학과) ;
  • 김민영 (중앙대학교 식품공학과) ;
  • 정현숙 (영남대학교 식품영양학과) ;
  • 박기환 (중앙대학교 식품공학과) ;
  • 류경 (영남대학교 식품영양학과)
  • Published : 2009.11.30

Abstract

This study was conducted to estimate the shelf-life of cooked mung bean sprouts contaminated with Staphylococcus aureus according to storage temperatures after cooking in school foodservice operations. A predictive growth model of S. aureus in cooked mung bean sprouts prepared using a standard recipe was developed at 4 storage temperatures (5, 15, 25, and 35${^{\circ}C}$). To determine the effect of vinegar on the shelf-life of cooked mung bean sprouts, the growth of S. aureus in sprouts prepared using vinegar and the standard recipe were compared. The $R^2$ values of the specific growth rate (SGR) and lag time (LT) determined using the Gompertz model were greater than 0.90 at all temperatures except 5${^{\circ}C}$, which confirmed that it would be appropriate to use these parameters for a secondary model. The secondary model, which indicates changes in LT and SGR values according to storage temperatures, was calculated using response surface models. The compatibility of the developed model was confirmed by calculating $R^2$, Bf, Af and MSE values as statistic parameters. The $R^2$ values of LT and SGR were 0.94 or higher, and the MSE, Bf and Af values were 0.02 and 0.002, 0.97 and 1.03, and 1.31 and 1.10, respectively, with high statistical compatibility. The growth rate of S. aureus was higher when the standard recipe was used than when vinegar was used at all temperatures. Indeed, no growth of S. aureus was observed in mung bean sprouts prepared using vinegar. Based on the model developed, cooked mung bean sprouts prepared using the standard recipe for school foodservice should be stored at 10${^{\circ}C}$ or less. Additionally, sprouts stored at 25 or 35${^{\circ}C}$ should be consumed within 6 or 12 hours after cooking. Finally, the addition of vinegar will prevent the growth of S. aureus in cooked mung bean sprouts.

본 연구는 학교급식에서 제공되는 숙주나물의 안전성을 확보하기 위하여 수행되었다. 표준레시피를 이용하여 조리한 숙주나물에 대하여 예측 미생물학을 이용하여 숙주나물의 성장예측 모델을 개발한 후 보관기간을 설정하였고, 식초를 첨가하여 조리한 숙주나물의 S. aureus 성장과 비교하였다. 표준레시피를 이용하여 조리한 S. aureus는 성장하기에 적절한 pH(6.32)로 측정되었고, 온도 변화(5, 15, 25, 35$^{\circ}C$)에 따라 빠르게 증식하였다. 성장예측모델을 개발하기 위하여 Gompertz model을 적용하여 생육 지표(LT, SGR)를 구한 결과 5$^{\circ}C$를 제외하고 0.90 이상의 높은 $R_2$값을 나타내어 이차모델의 변수 값으로 사용하기에 적합성이 높았다. Response surface model을 이용한 2차 모델에서는 LT, SGR의 R²값이 모두 0.94 이상으로 나타나 관측값과 예측값의 상관관계가 밀접하였다. MSE는 각각 0.020, 0.002로 나타났고, Bf와 Af의 경우에도 이상적인 값인 1에 가까운 값으로 나타나 관측값과 예측값 간의 높은 정확성을 나타내었다. 따라서 본 연구의 S. aureus 성장예측모델은 통계적으로 적합성이 높다고 할 수 있으며, 사용 가능한 모델로 판단된다. 숙주나물의 보관기간은 S. aureus의 성장조건과 독소가 생성되는 6.0 log CFU/g을 근거로 설정하였다. 그 결과 10$^{\circ}C$ 이하의 낮은 온도에서 보관할 것을 권장한다. 25$^{\circ}C$ 이상에서 보관할 경우에는 12시간 이전, 35$^{\circ}C$ 이상에서는 6시간 이전에 섭취하여야 할 것이다. 숙주나물에 식초를 첨가한 결과 pH는 4.78로 나타나 S. aureus의 증식에 불리한 조건이었고, 균의 증식도 온도 변화와 상관없이 일정한 수준을 유지하거나 감소하였다. 따라서 기온이 높은 계절에는 식초를 이용하면 S. aureus에 대한 증식억제 효과를 나타내 숙주나물의 안전성을 높일 수 있을 것이다.

Keywords

References

  1. Park JK. 1990. The status of school food service program and its improvement proposal in Korea. Korean J Nutr 23: 213-218
  2. Ministry of Education Science & Technology. 2009. 2008 School Foodservices Statistics. Available at www.mest.go.kr. Accessed Aug 1, 2009
  3. Kim YH, Ryu K, Lee YK. 2009. Microbiological safety during delivering of food ingredients supplied to elementary school food services in Daegu and Gyeongbuk provinces-seafood, meat and frozen processing food-. Korean J Food Preserv 16: 276-285
  4. Yoo WC, Park HK, Kim KL. 2000. Microbiological hazard analysis for prepared foods and raw materials of foodservice operation. Korean J Dietary Culture 15: 123-137
  5. Tamarapu S, Mckillip JL, Drake M. 2001. Development of a multiplex polymerase chain reaction assay for detection and differentiation of Staphylococcus aureus in dairy products. J Food Prot 64: 664-668 https://doi.org/10.4315/0362-028X-64.5.664
  6. Pereira ML, Carmo do LS, Santos dos EJ, Bergdoll MS. 1994. Staphylococcus food poisoning from cream-filled cake in metropolitan area of south-eastern Brazil. Rev Saude Publica 28: 406-409 https://doi.org/10.1590/S0034-89101994000600003
  7. Korea Food & Drug Administration. 2009. 2008 Foodborne Illness Statistics. Available at http://www.kfda.go.kr. Accessed August 1, 2009
  8. Woo SM, Jang SY, Kim OM, Youn KS, Jeong YJ. 2004. Antimicrobial effects of vinegar on the harmful food-borne organisms. Korean J Food Preserv 11: 117-121
  9. Koseki S, Isobe S. 2005. Prediction of pathogen growth on iceberg lettuce under real temperature history during distribution from farm to table. Int J Food Microbiol 104:239-248 https://doi.org/10.1016/j.ijfoodmicro.2005.02.012
  10. Park SY, Choi JW, Chung DH, Kim MG, Lee KH, Kim KS, Bahk GJ, Bae DH, Park SK, Kim KY, Kim CH, Ha SD. 2007. Development of a predictive mathematical model for the growth kinetics of Listeria monocytogenes in sesame leaves. Food Sci Biotechnol 16: 238-242
  11. Geysen S, Escalona VH, Verlinden BE, Aertsen A, Geeraerd AH, Michiels CW, Van Impe JF, Nicolai BM. 2006. Validation of predictive growth models describing superatmospheric oxygen effects on Pseudomonas fluorenscens and Listeria innocua on fresh-cut lettuce. Int J Food Microbiol 111: 48-58 https://doi.org/10.1016/j.ijfoodmicro.2006.04.044
  12. Carrasco E, Perez-Rodriguez F, Valero A, Garcia-Gimeno RM, Zurera G. 2008. Growth of Listeria monocytogenes on shredded, ready-to-eat iceberg lettuce. Food Control 19: 487-494 https://doi.org/10.1016/j.foodcont.2007.05.014
  13. Bahk GJ, Oh DH, Ha SD, Park KH, Joung MS, Chun SJ, Park JS, Woo GJ, Hong CH. 2005. Quantitative microbial risk assessment model for Staphylococcus aureus in Kimbab. Korean J Food Sci Technol 37: 484-491
  14. Heo C, Kim WK, Choi YS, Kim CJ, Paik HD. 2008. Application of predictive microbiology for shelf-life estimation of Tteokgalbi containing dietary fiber from rice bran. Korean J Food Sci Ani Resour 28: 232-239 https://doi.org/10.5851/kosfa.2008.28.2.232
  15. Heo C, Kim WK, Choi YS, Kim CJ, Paik HD. 2009. Shelf-life estimation of frankfurter sausage containing dietary fiber from rice bran using predictive modeling. Korean J Food Sci Ani Resour 29: 47-54 https://doi.org/10.5851/kosfa.2009.29.1.47
  16. Lee HM, Lee GY, Yoon EK, Kim HJ, Kang YS, Lee DH, Park JS, Lee SH, Woo GJ, Kang SH, Yang JS, Yang KH. 2004. Computation of maximum edible time using monitoring data of Staphylococcus aureus in Kimbap and Food Micro Model. J Fd Hyg Safety 19: 49-51
  17. Kim EJ. 2004. Analysis of microbiological hazards and quantitative microbial risk assessment of Staphylococcus aureus inoculated onto potentially hazardous foods in school foodservice operations. MS Thesis. Yonsei University, Seoul, Korea
  18. Dahl CA, Matthews ME, Marth EH. 1981. Survival of Streptococcus faecium in beef loaf and potatoes of after microwave-heating in a simulated cook/chill foodservice system. J Food Prot 44: 128-132 https://doi.org/10.4315/0362-028X-44.2.128
  19. KFDA. 2007. Food Code. Korea Food and Drug Administration
  20. Yang SE, Yu RC, Chou CC. 2001. Influence of holding temperature on the growth and survival of Salmonella spp. and Staphylococcus aureus and the production of Staphylococcus enterotoxin in egg products. Int J Food Microbiol 63: 99-107 https://doi.org/10.1016/S0168-1605(00)00416-5
  21. Gibson AM, Bratchell N, Roberts TA. 1988. Predicting microbial growth: growth response of Salmonella in a laboratory medium as affected by pH, sodium chloride and storage temperature. Int J Food Microbiol 6: 155-178 https://doi.org/10.1016/0168-1605(88)90051-7
  22. Bechmann IE, Jensen HS, Bøknase N, Warm K, Nielsen J. 1998. Prediction of chemical, physical and sensory data from process parameters for frozen cod using multivariate analysis. J Sci Food Agric 78: 329-336 https://doi.org/10.1002/(SICI)1097-0010(199811)78:3<329::AID-JSFA121>3.0.CO;2-E
  23. Duffy LL, Vanderline PB, Grau FH. 1994. Growth of Listeria monocytogenes on vaccum-packed cooked meats: effects of pH, Aw, nitrite and sodium ascorbate. Int J Food Microbiol 23: 377-390 https://doi.org/10.1016/0168-1605(94)90164-3
  24. Sutherland JP, Bayliss AJ, Robert TA. 1994. Predictive modelling of growth Staphlycoccus aureus: the effects of temperature, pH and sodium chloride. Int J Food Microbiol 21: 217-236 https://doi.org/10.1016/0168-1605(94)90029-9
  25. Ross T. 1996. Indices for performance evaluation of predictive model in food microbiology. J Appl Bacteriol 81: 201-508 https://doi.org/10.1111/j.1365-2672.1996.tb04501.x
  26. Ross T. 1999. Predictive food microbiology models in the meat industry. Meat and Livestock Australia, Sydney, Australia. p 196
  27. Lindqvist R, Sylven S, Vagsholm I. 2002. Quantitative microbial risk assessment exemplified by Staphylococcus aureus in unripened cheese made from raw milk. Int J Food Microbiol 78: 144-170
  28. Atanassova V, Meindl A, Ring C. 2001. Prevalence of Staphylococcus aureus and Staphylococcal enterotoxin in raw pork and uncooked smoked ham-a comparison of classical culturing detection and RFLP-PCR. Int J Food Microbiol 68: 105-113 https://doi.org/10.1016/S0168-1605(01)00479-2
  29. Normanno G, Firinu A, Virgilio S, Mula G, Dambrosio A, Poggiu A, Decastelli L, Mioni R, Scuota S, Bolzoni G, Di Giannatale E, Salinetti AP, La Salandra G, Bartoli M, Zuccon F, Pirino T, Sias S, Parisi A, Quaglia NC, Celano GV. 2005. Coagulase-positive Staphylococci and Staphylococcus aureus in food products marketed in Italy. Int J Food Microbiol 98: 73-79 https://doi.org/10.1016/j.ijfoodmicro.2004.05.008
  30. Min JH, Lee YK. 2004. Microbiological quality evaluation for implementation of a HACCP system in day-care center foodservice operations. I . Focus on heating process and after-heating process. Korean J Nutr 37: 712-721
  31. Seol HR, Park HS, Park KH, Park AK, Ryu K. 2009. Microbiological evaluation of foods and kitchen environments in childcare center and kindergarten foodservice operations. J Korean Soc Food Sci Nutr 38: 252-260 https://doi.org/10.3746/jkfn.2009.38.2.252
  32. Seo KY, Heo SK, Lee C, Chung DH, Kim MG, Lee KH, Kim KS, Bahk GJ, Bae DH, Kim KY, Kim CH, Ha SD. 2007. Development predictive mathematical model for the growth kinetics of Staphylococcus aureus by response surface model. J Microbiol Biotechnol 17: 1437-1444
  33. Chung MS. 2007. Study on the risk management for risk reduction of Staphylococcus aureus in ready-to-eat foods (II). The final report of Korea Food and Drug Administration research project. Korea Health Industry Development Institute. Seoul, Korea
  34. Skandamis PN, Nychas GE. 2000. Development and evaluation of a model predicting the survival of Escherichia coli O157:H7 NCTT 12900 in homemade eggplant salad at various temperatures, pH and oregano essential oil concentrations. Appl Environ Microbiol 66: 1646-1653 https://doi.org/10.1128/AEM.66.4.1646-1653.2000
  35. Fujikawa H, Morozumi S. 2006. Modeling Staphylococcus aureus growth and enterotoxin production in milk. Food Microbiol 23: 260-267 https://doi.org/10.1016/j.fm.2005.04.005
  36. Kim EJ, Kang SJ, Hahn YS. 2008. Storage characteristic comparison of laver-wrapped rice and laver-wrapped rice with vinegar. Korean J Food Cookery Sci 24: 99-105

Cited by

  1. Predicting and Extending the Shelf Life of Red Cabbage Sprouts vol.42, pp.9, 2013, https://doi.org/10.3746/jkfn.2013.42.9.1518
  2. Development and Validation of Predictive Model for Foodborne Pathogens in Preprocessed Namuls and Wild Root Vegetables vol.42, pp.10, 2013, https://doi.org/10.3746/jkfn.2013.42.10.1690
  3. 시중 유통판매 중인 편육에서의 Staphylococcus aureus 성장예측모델 개발 vol.32, pp.3, 2017, https://doi.org/10.13103/jfhs.2017.32.3.206
  4. Predictive model of Staphylococcus aureus growth on egg products vol.28, pp.3, 2009, https://doi.org/10.1007/s10068-018-0529-4