DOI QR코드

DOI QR Code

Fungal Strain Improvement for Cellulase Production Using Repeated and Sequential Mutagenesis

  • Vu, Van-Hanh (Department of Bioscience and Biotechnology, The University of Suwon) ;
  • Pham, Tuan-Anh (Department of Bioscience and Biotechnology, The University of Suwon) ;
  • Kim, Keun (Department of Bioscience and Biotechnology, The University of Suwon)
  • Published : 2009.12.31

Abstract

A fungal strain producing a high level of cellulase was selected from 320 fungal isolates and identified as Aspergillus sp. This strain was further improved for cellulase production by sequential treatments by two repeated rounds of $\gamma$-irradiation of $Co^{60}$, ultraviolet treatment and four repeated rounds of treatment with N-methyl-N'-nitro-N-nitrosoguanidine. The best mutant strain, Aspergillus sp. XTG-4, was selected after screening and the activities of carboxymethyl cellulase, filter paper cellulase and $\beta$-glucosidase of the cellulase were improved by 2.03-, 3.20-, and 1.80-fold, respectively, when compared to the wild type strain. After being subcultured 19 times, the enzyme production of the mutant Aspergillus sp. XTG-4s was stable.

Keywords

References

  1. Chand, P., Aruna, A., Maqsood, A. M. and Rao, L. V. 2005. Novel mutation method for increased cellulase production. J. Appl. Microbiol. 98:318-323 https://doi.org/10.1111/j.1365-2672.2004.02453.x
  2. Chandra, M. S., Reddy, B. R. and Choi, Y. L. 2008. Production of cellulolytic enzymes by Aspergillus niger on solid and submerged state fermentation. J. Life. Sci. 18:1049-1052 https://doi.org/10.5352/JLS.2008.18.8.1049
  3. Coughlan, M. P. 1985. The properties of fungal and bacterial cellulases with comment on their production and application. Biotechnol. Genet. Eng. Rev. 3:39-109 https://doi.org/10.1080/02648725.1985.10647809
  4. Coughlan, M. P. and Ljungdahl, L. G. 1988. Comparative biochemistry of fungal and bacterial cellulolytic systems. FEMS Symp. 43:11-30
  5. Dhawan, S., Lal, R. and Kuhad, R. C. 2003. Ethidium bromide stimulated hyper laccase production from bird's nest fungus Cyathus bulleri. Lett. Appl. Microbiol. 36:64-67 https://doi.org/10.1046/j.1472-765X.2003.01267.x
  6. Duff, S. J. B. and Murray, W. D. 1996. Bioconversion of forest products industry waste cellulosics to fuel ethanol: a review. Bioresour. Technol. 55:1-33 https://doi.org/10.1016/0960-8524(95)00122-0
  7. Fan, L. T., Gharpuray, M. M. and Lee, Y. H. 1987. Cellulose Hydrolysis, In: Biotechnology Monographs. pp.57. Springer, Berlin
  8. Gardner, K. H. and Blackwell, J. 1974. The structure of native cellulose. Biopolymers 13:1975-2001 https://doi.org/10.1002/bip.1974.360131005
  9. Grajek, W. 1987. Comparative studies on the production of cellulases by thermophilic fungi in submerged and solid-state fermentation. Appl. Microbiol. Biotechnol. 26:126-129 https://doi.org/10.1007/BF00253895
  10. Henry, T., Iwen, P. C. and Hinrichs, S. H. 2000. Identification of Aspergillus species using internal transcribed spacer regions 1 and 2. J. Clin. Microbiol. 38:1510-1515
  11. Himmel, M. E., Adney, W. S., Baker, J. O., Elander, R., McMillan, J. D., Nieves, R. A., Sheehan, J., Thomas, S. R., Vinzant, T. B. and Zhang, M. 1997. Advanced bioethanol production technologies: a perspective. In: Fuels and Chemicals from Biomass. ACS Symposium Series 666. pp. 2-45. Eds. R. C. Shaha and J. Woodward. American Chemical Society. Washington DC
  12. Kolpak, F. J. and Blackwell, J. 1976. Determination of the structure of cellulose II. Macromolecules 9:273-278 https://doi.org/10.1021/ma60050a019
  13. Kuhad, R. C., Kumar, M. and Singh, A. 1994. A hypercellulolytic mutant of Fusarium oxysporum . Lett. Appl. Microbiol. 19:397-400 https://doi.org/10.1111/j.1472-765X.1994.tb00486.x
  14. Miller, G. L. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31:426-428 https://doi.org/10.1021/ac60147a030
  15. Parekh, S., Vinci, V. A. and Strobel, R. J. 2000. Improvement of microbial strains and fermentation processes. Appl. Microbiol. Biotechnol. 54:287-301 https://doi.org/10.1007/s002530000403
  16. Schell, D. J., Farmer, J., Newma, M. and McMillan, J. D. 2003. Dilute-sulfuric acid pretreatment of corn stover in pilot-scale reactor: Investigation of yields, kinetics, and enzymatic digestibilities of solids. Appl. Biochem. Biotechnol. 105:69-85 https://doi.org/10.1385/ABAB:105:1-3:69
  17. Selby, K. and Maitland, C. C. 1967. The cellulase of Trichoderma viride. Separation of the components involved in the solubilization of cotton. Biochem. J. 104:716-724 https://doi.org/10.1042/bj1040716
  18. Singh, A., Abidi, A. B., Darmwal, N. S. and Agrawal, A. K. 1991. Influence of nutritional factors of cellulase production from natural lignocellulosic residues by Aspergillus niger. Agri. Biol. Res. 7:19-27
  19. Singh, A., Kuhad, R. C. and Kumar, M. 1995. Xylanase production by a hyperxylanolytic mutant of Fusarium oxysporum. Enzyme Microb. Technol. 17:551-553 https://doi.org/10.1016/0141-0229(94)00074-2
  20. Solomon, B. O., Amigun, B., Betiku, E., Ojumu, T. V. and Layokun, S. K. 1997. Optimization of cellulase production by Aspergillus flavus Linn isolate NSPR101 grown on bagasse. J. Niger. Soc. Chem. Eng. 16:61-68
  21. Sternberg, D. 1976. Production of cellulase by Trichoderma. Biotechnol. Bioeng. Symp. 6:35-53
  22. Sun, Y. and Cheng, J. Y. 2002. Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour. Technol. 83:1-11 https://doi.org/10.1016/S0960-8524(01)00212-7
  23. Toyama, N. and Ogawa, K. 1975. Sugar production from agricultural woody wastes by saccharification with Trichoderma viride cellulase. Symposium on enzymatic hydrolysis of cellulose. Biotechnol. Bioeng. 5:225-244
  24. White, T. J., Bruns, T., Lee, S. and Taylor, J. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: PCR Protocols: A Guide to Methods and Applications. Eds. M.A. Innis, D. H. Gelfand, J. J. Sninsky and T. J. White. Academic Press, Orlando, FL
  25. Wood, T. M. and Phillips, D. R. 1969. Another source of cellulase. Nature 222:986-987 https://doi.org/10.1038/222986b0
  26. Zhang, Y. H. P., Himmel, M. E. and Mielenz, J. R. 2006. Outlook for cellulase improvement: Screening and selection strategies. Biotechnol. Adv. 24:452-481 https://doi.org/10.1016/j.biotechadv.2006.03.003

Cited by

  1. The realm of cellulases in biorefinery development vol.32, pp.3, 2012, https://doi.org/10.3109/07388551.2011.595385
  2. Production, statistical optimization and application of endoglucanase from Rhizopus stolonifer utilizing coffee husk vol.36, pp.8, 2013, https://doi.org/10.1007/s00449-012-0865-3
  3. Improvement of Aspergillus oryzae NRRL 3484 by mutagenesis and optimization of culture conditions in solid-state fermentation for the hyper-production of extracellular cellulase vol.106, pp.5, 2014, https://doi.org/10.1007/s10482-014-0255-8
  4. Improvement of Laccase Production and its Characterization by Mutagenesis vol.39, pp.1, 2015, https://doi.org/10.1111/jfbc.12111
  5. Development of schemes of induced mutagenesis for improving the productivity of Aspergillus strains producing amylolytic enzymes vol.86, pp.4, 2017, https://doi.org/10.1134/S0026261717040087
  6. Random mutagenesis of super Koji (Aspergillus oryzae): improvement in production and thermal stability of α-amylases for maltose syrup production vol.18, pp.1, 2018, https://doi.org/10.1186/s12866-018-1345-y
  7. Review on Cellulase and Xylanase Engineering for Biofuel Production vol.14, pp.1, 2018, https://doi.org/10.1089/ind.2017.0027