Browse > Article
http://dx.doi.org/10.4489/MYCO.2009.37.4.267

Fungal Strain Improvement for Cellulase Production Using Repeated and Sequential Mutagenesis  

Vu, Van-Hanh (Department of Bioscience and Biotechnology, The University of Suwon)
Pham, Tuan-Anh (Department of Bioscience and Biotechnology, The University of Suwon)
Kim, Keun (Department of Bioscience and Biotechnology, The University of Suwon)
Publication Information
Mycobiology / v.37, no.4, 2009 , pp. 267-271 More about this Journal
Abstract
A fungal strain producing a high level of cellulase was selected from 320 fungal isolates and identified as Aspergillus sp. This strain was further improved for cellulase production by sequential treatments by two repeated rounds of $\gamma$-irradiation of $Co^{60}$, ultraviolet treatment and four repeated rounds of treatment with N-methyl-N'-nitro-N-nitrosoguanidine. The best mutant strain, Aspergillus sp. XTG-4, was selected after screening and the activities of carboxymethyl cellulase, filter paper cellulase and $\beta$-glucosidase of the cellulase were improved by 2.03-, 3.20-, and 1.80-fold, respectively, when compared to the wild type strain. After being subcultured 19 times, the enzyme production of the mutant Aspergillus sp. XTG-4s was stable.
Keywords
Aspergillus sp; Cellulase; Sequential repeated mutagenesis; Stability;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Chandra, M. S., Reddy, B. R. and Choi, Y. L. 2008. Production of cellulolytic enzymes by Aspergillus niger on solid and submerged state fermentation. J. Life. Sci. 18:1049-1052   DOI
2 Henry, T., Iwen, P. C. and Hinrichs, S. H. 2000. Identification of Aspergillus species using internal transcribed spacer regions 1 and 2. J. Clin. Microbiol. 38:1510-1515   ScienceOn
3 Schell, D. J., Farmer, J., Newma, M. and McMillan, J. D. 2003. Dilute-sulfuric acid pretreatment of corn stover in pilot-scale reactor: Investigation of yields, kinetics, and enzymatic digestibilities of solids. Appl. Biochem. Biotechnol. 105:69-85   DOI   ScienceOn
4 Chand, P., Aruna, A., Maqsood, A. M. and Rao, L. V. 2005. Novel mutation method for increased cellulase production. J. Appl. Microbiol. 98:318-323   DOI   ScienceOn
5 Coughlan, M. P. 1985. The properties of fungal and bacterial cellulases with comment on their production and application. Biotechnol. Genet. Eng. Rev. 3:39-109   DOI
6 Coughlan, M. P. and Ljungdahl, L. G. 1988. Comparative biochemistry of fungal and bacterial cellulolytic systems. FEMS Symp. 43:11-30
7 Duff, S. J. B. and Murray, W. D. 1996. Bioconversion of forest products industry waste cellulosics to fuel ethanol: a review. Bioresour. Technol. 55:1-33   DOI   ScienceOn
8 Zhang, Y. H. P., Himmel, M. E. and Mielenz, J. R. 2006. Outlook for cellulase improvement: Screening and selection strategies. Biotechnol. Adv. 24:452-481   DOI   ScienceOn
9 Selby, K. and Maitland, C. C. 1967. The cellulase of Trichoderma viride. Separation of the components involved in the solubilization of cotton. Biochem. J. 104:716-724   DOI   ScienceOn
10 Singh, A., Abidi, A. B., Darmwal, N. S. and Agrawal, A. K. 1991. Influence of nutritional factors of cellulase production from natural lignocellulosic residues by Aspergillus niger. Agri. Biol. Res. 7:19-27
11 Fan, L. T., Gharpuray, M. M. and Lee, Y. H. 1987. Cellulose Hydrolysis, In: Biotechnology Monographs. pp.57. Springer, Berlin
12 Gardner, K. H. and Blackwell, J. 1974. The structure of native cellulose. Biopolymers 13:1975-2001   DOI
13 Grajek, W. 1987. Comparative studies on the production of cellulases by thermophilic fungi in submerged and solid-state fermentation. Appl. Microbiol. Biotechnol. 26:126-129   DOI
14 Kolpak, F. J. and Blackwell, J. 1976. Determination of the structure of cellulose II. Macromolecules 9:273-278   DOI   ScienceOn
15 Parekh, S., Vinci, V. A. and Strobel, R. J. 2000. Improvement of microbial strains and fermentation processes. Appl. Microbiol. Biotechnol. 54:287-301   DOI   ScienceOn
16 Himmel, M. E., Adney, W. S., Baker, J. O., Elander, R., McMillan, J. D., Nieves, R. A., Sheehan, J., Thomas, S. R., Vinzant, T. B. and Zhang, M. 1997. Advanced bioethanol production technologies: a perspective. In: Fuels and Chemicals from Biomass. ACS Symposium Series 666. pp. 2-45. Eds. R. C. Shaha and J. Woodward. American Chemical Society. Washington DC
17 Dhawan, S., Lal, R. and Kuhad, R. C. 2003. Ethidium bromide stimulated hyper laccase production from bird's nest fungus Cyathus bulleri. Lett. Appl. Microbiol. 36:64-67   DOI   ScienceOn
18 Sun, Y. and Cheng, J. Y. 2002. Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour. Technol. 83:1-11   DOI   ScienceOn
19 Kuhad, R. C., Kumar, M. and Singh, A. 1994. A hypercellulolytic mutant of Fusarium oxysporum . Lett. Appl. Microbiol. 19:397-400   DOI   ScienceOn
20 Miller, G. L. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31:426-428   DOI
21 Singh, A., Kuhad, R. C. and Kumar, M. 1995. Xylanase production by a hyperxylanolytic mutant of Fusarium oxysporum. Enzyme Microb. Technol. 17:551-553   DOI   ScienceOn
22 Solomon, B. O., Amigun, B., Betiku, E., Ojumu, T. V. and Layokun, S. K. 1997. Optimization of cellulase production by Aspergillus flavus Linn isolate NSPR101 grown on bagasse. J. Niger. Soc. Chem. Eng. 16:61-68
23 Sternberg, D. 1976. Production of cellulase by Trichoderma. Biotechnol. Bioeng. Symp. 6:35-53
24 Wood, T. M. and Phillips, D. R. 1969. Another source of cellulase. Nature 222:986-987   DOI   ScienceOn
25 Toyama, N. and Ogawa, K. 1975. Sugar production from agricultural woody wastes by saccharification with Trichoderma viride cellulase. Symposium on enzymatic hydrolysis of cellulose. Biotechnol. Bioeng. 5:225-244
26 White, T. J., Bruns, T., Lee, S. and Taylor, J. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: PCR Protocols: A Guide to Methods and Applications. Eds. M.A. Innis, D. H. Gelfand, J. J. Sninsky and T. J. White. Academic Press, Orlando, FL