DOI QR코드

DOI QR Code

Computational Study on the Conformational Characteristics of Calix[4]pyrrole Derivatives

  • Hong, Joo-Yeon (Department of Chemistry, Sookmyung Women’s University) ;
  • Son, Min-Kyung (Department of Chemistry, Sookmyung Women’s University) ;
  • Ham, Si-Hyun (Department of Chemistry, Sookmyung Women’s University)
  • Published : 2009.02.20

Abstract

The comparative study of three calix[4]heterocycles (calix[4]pyrrole, calix[4]furan, and calix[4]thiophene) has been theoretically performed by using high-level density functional theory (DFT) at the MPWB1K/6-311G$^{**}$//B3LYP/6- 311G$^{**}$ level. The effect of different hetero-atoms (nitrogen, oxygen, and sulfur) placed in the heterocycles on the conformational flexibility, thermodynamic stability order, cavity sizes, charge distributions, and binding propensities are examined. The thermodynamic stability differences between the conformers are found to be much greater in calix[4]pyrrole compared to those in calix[4]furan and calix[4]thiophene. Relatively larger NH group and higher dipole of a pyrrole ring in calix[4]pyrrole contribute to the higher energy barrier for the conformational conversions and relatively rigid potential energy surface compared to the case of calix[4]furan and calix[4]thiophene. The computational results herein provide theoretical understanding of the conformational flexibility and the thermodynamic nature which can be applied to understand the complexation behavior of the three calix[4]heterocycles.

Keywords

References

  1. Asfari, Z.; Bohmer, V.; Harrowfield, J.; Vicens, J. Calixarenes 2001; Kluwer Academic: Dordrecht, 2001.
  2. Gutsche, C. D. Calixarenes Revisited; Royal Society of Chemistry: Cambridge, 1998
  3. Baeyer, A. Ber. Dtsch. Chem. Ges.1886, 19, 214.
  4. Gale, P. A.; Sessler, J. L.; Král, V.; Lynch, V. J. Am. Chem. Soc. 1996, 118, 5140. https://doi.org/10.1021/ja960307r
  5. Král, V.; Gale, P. A.; Anzenbacher, P., Jr.; Jursikova, K.; Lynch, V.; Sessler, J. L. Chem. Commun. 1998, 9.
  6. Van Hoorn, W. O.; Jorgensen, W. L. J. Org. Chem. 1999, 64, 7439 https://doi.org/10.1021/jo9907437
  7. Wu, Y. D.; Wang, D. F.; Sessler, J. L. J. Org. Chem.Inorg. Chem. 2001, 66, 3739.
  8. Sessler, J. L.; Anzenbacher, P.; Miyaji, H.; Jurskov, K.; Bleasdale, E. R.; Gale, P. A. Ind. Eng. Chem. Res. 2000, 39, 3471. https://doi.org/10.1021/ie000102y
  9. Sessler, J. L.; Cho, W.-S.; Lynch, V.; Král, V. Chem. Eur. J. 2002, 8, 1134. https://doi.org/10.1002/1521-3765(20020301)8:5<1134::AID-CHEM1134>3.0.CO;2-M
  10. Cafeo, G.; Kohnke, F. H.; La Torre, G. L.; Parisi, M. F.; Pistone Nascone, R.; White, A. J. P.; Williams, D. J. Chem. Eur. J. 2002, 8, 3148. https://doi.org/10.1002/1521-3765(20020715)8:14<3148::AID-CHEM3148>3.0.CO;2-B
  11. Sessler, J. L.; An, D.; Cho, W. S.; Lynch, V. Angew. Chem. Int. Ed. 2003, 42, 2278. https://doi.org/10.1002/anie.200350941
  12. Sessler, J. L.; Seidel, D. Angew. Chem. Int. Ed. 2003, 42, 5134. https://doi.org/10.1002/anie.200200561
  13. Sessler, J. L.; An, D.; Cho, W. S.; Lynch, V. J. Am. Chem. Soc. 2003, 125, 13646. https://doi.org/10.1021/ja038264j
  14. Wang, D. F.; Wu, Y. D. J. Theor. Comp. Chem. 2004, 3, 51. https://doi.org/10.1142/S0219633604000908
  15. Sessler, J. L.; An, D.; Cho, W. S.; Lynch, V.; Marquez, M. Chem. Commun. 2005, 540.
  16. Sessler, J. L.; An, D.; Cho, W. S.; Lynch, V.; Yoon, D. W.;Hong, S. J.; Lee, C. H. J. Org. Chem. 2005, 70, 1511. https://doi.org/10.1021/jo048480q
  17. Sessler, J. L.; An, D.; Cho, W. S.; Lynch, V.; Marquez, M. Chem. Eur. J. 2005, 11, 2001 https://doi.org/10.1002/chem.200400894
  18. Blas, J. R.; López-Bes, J. M.; Marquez, M.; Sessler, J. L.; Luque, F. J.; Orozco, M. Chem. Eur. J. 2007, 13, 1108. https://doi.org/10.1002/chem.200600757
  19. Pichierri, F. J. Mol. Struct.: THEOCHEM 2008, 870, 36. https://doi.org/10.1016/j.theochem.2008.08.032
  20. Anzenbacher, P.; Try, A. C.; Miyaji, H.; Jurskov, K.; Lynch, V. M.; Marquez, M.; Sessler, J. L. J. Am. Chem. Soc. 2000, 122, 10268 https://doi.org/10.1021/ja002112w
  21. Lynch, V. M.; Gale, P. A.; Sessler, J. L.; Madeiros, D. Acta Crystallogr., Sect. C 2001, 57, 1426. https://doi.org/10.1107/S0108270101015931
  22. Uno, H.; Inoue, K.; Inoue, T.; Ono, N. Org. Biomol. Chem. 2003, 1, 3857. https://doi.org/10.1039/b307132d
  23. Dey, S.; Pal. K.; Sarkar, S. Tetrahedron Lett. 2008, 49, 960. https://doi.org/10.1016/j.tetlet.2007.12.025
  24. Ackman, R. G.; Brown, W. H.; Wright, G. F. J. Org. Chem. 1955, 20, 1147.
  25. Beals, R.; Brown, W. H. J. Org. Chem. 1956, 21, 447. https://doi.org/10.1021/jo01110a019
  26. Kobuke, Y.; Hanji, K.; Horiguchi, K.; Asada, M.; Nakayama, Y.; Furukawa, J. J. Am. Chem. Soc. 1976, 98, 7414. https://doi.org/10.1021/ja00439a050
  27. Williams, P. D.; LeGoff, E. J. Org. Chem. 1981, 46, 4143. https://doi.org/10.1021/jo00334a007
  28. Hazell, A. Acta Crystallogr., Sect. C 1989, 45, 137. https://doi.org/10.1107/S0108270188010686
  29. Musau, R. M.; Whiting, A. J. Chem. Soc., Perkin Trans.1 1994, 2881.
  30. Kretz, C. M.; Gallo, E.; Solari, E.; Floriani, C.; Chiesi-Villa, A.; Rizzoli, C. J. Am. Chem. Soc. 1994, 116, 10775. https://doi.org/10.1021/ja00102a049
  31. Crescenzi, R.; Solari, E.; Floriani, C.; Chiesi-Villa, A.; Rizzoli, C. Inorg. Chem. 1996, 35, 2413. https://doi.org/10.1021/ic951649l
  32. Jang, Y. S.; Kim, H. J.; Lee, P. H.; Lee, C. H. Tetrahedron Lett. 2000, 41, 2919. https://doi.org/10.1016/S0040-4039(00)00294-X
  33. Nagarajan, A.; Ka, J. W.; Lee, C. H. Tetrahedron 2001, 57, 7323. https://doi.org/10.1016/S0040-4020(01)00719-0
  34. Guillard, J.; Meth-Cohn, O.; Rees, C. W.; White, A. J. P.;Williams, D. J. Chem. Commun. 2002, 232.
  35. Vogel, E.; Röhrig, R.; Sicken, M.; Knipp, B.; Herrmann, A.;Pohl, M.; Schmickler, H.; Lex, J. Angew. Chem. Int. Ed. Engl. 1989, 28, 1651. https://doi.org/10.1002/anie.198916511
  36. Danil de Namor, A. F.; Abbas, I. J. Phys. Chem. B 2007, 111, 5803. https://doi.org/10.1021/jp070760x
  37. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.;Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A., Jr.; Vreven, T.; Kudin, K.; Burant, J. C.; Millam, J. M.; Iyengay, S. S.;Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.;Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.;Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.;Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.;Hratchian, H. P.; Cross, J. B.; Adamo, C.; Jaramillo, J.; Comperts, R.; Startmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.;Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth,G. A.; Salvador, P.; Dannenbuerg, J. J.; Zakrzewski, V. G.;Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick,D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.;0 Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.;Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.;Chem, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 03, revision C.02; Gaussian, Inc.: Wallingford, CT, 2004.
  38. Dewar, M. J. S.; Thiel, W. J. Am. Chem. Soc. 1977, 99, 4499. https://doi.org/10.1021/ja00455a049
  39. Dewar, M. J. S.; Zoebisch, E. G.; Healy, E. F. J. Am. Chem. Soc. 1985, 107, 3902. https://doi.org/10.1021/ja00299a024
  40. Becke, A. D. J. Chem. Phys. 1993, 98, 5648. https://doi.org/10.1063/1.464913
  41. Zhao, Y.; Truhlar, D. G. J. Phys. Chem. A 2004, 108, 6908. https://doi.org/10.1021/jp048147q
  42. Wiberg, K. B.; Rablen, P. R. J. Comp. Chem. 1993, 14, 1504-1518. https://doi.org/10.1002/jcc.540141213
  43. Gomes, T. C. F.; da Silva, Jr. J. V.; Vidal, L. N.;Vazquez, P. A. M.; Bruns, R. E. Theor. Chem. Account 2008, 121, 173 https://doi.org/10.1007/s00214-008-0461-4

Cited by

  1. Synthesis and anion binding properties of novel 3,12- and 3,7-bis(4′-nitrophenyl)-azo-calix[4]pyrrole receptors vol.34, pp.7, 2010, https://doi.org/10.1039/c0nj00315h
  2. Calix[n]triazoles and Related Conformational Studies vol.19, pp.20, 2017, https://doi.org/10.1021/acs.orglett.7b02557
  3. Strain effects determine the performance of artificial allosteric systems: calixarenes as models vol.55, pp.24, 2009, https://doi.org/10.1039/c9cc00573k