• Title/Summary/Keyword: Calix[4]pyrrole

Search Result 9, Processing Time 0.03 seconds

Computational Study on the Conformational Characteristics of Calix[4]pyrrole Derivatives

  • Hong, Joo-Yeon;Son, Min-Kyung;Ham, Si-Hyun
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.2
    • /
    • pp.423-428
    • /
    • 2009
  • The comparative study of three calix[4]heterocycles (calix[4]pyrrole, calix[4]furan, and calix[4]thiophene) has been theoretically performed by using high-level density functional theory (DFT) at the MPWB1K/6-311G$^{**}$//B3LYP/6- 311G$^{**}$ level. The effect of different hetero-atoms (nitrogen, oxygen, and sulfur) placed in the heterocycles on the conformational flexibility, thermodynamic stability order, cavity sizes, charge distributions, and binding propensities are examined. The thermodynamic stability differences between the conformers are found to be much greater in calix[4]pyrrole compared to those in calix[4]furan and calix[4]thiophene. Relatively larger NH group and higher dipole of a pyrrole ring in calix[4]pyrrole contribute to the higher energy barrier for the conformational conversions and relatively rigid potential energy surface compared to the case of calix[4]furan and calix[4]thiophene. The computational results herein provide theoretical understanding of the conformational flexibility and the thermodynamic nature which can be applied to understand the complexation behavior of the three calix[4]heterocycles.

Calix[4]pyrroles Bearing Pyrene-pickets at Diametrical Meso-positions with Amide Linkage

  • Yoo, Jae-Duk;Park, In-Won;Kim, Tae-Young;Lee, Chang-Hee
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.3
    • /
    • pp.630-634
    • /
    • 2010
  • The synthesis and ion binding properties of calix[4]pyrrole bearing pyrene moieties appended to one side of the calix[4]pyrrole are reported. The key feature is the presence of flexible fluorescence arms attached to the calix[4]pyrrole ring in a cis-fashion. The preliminary solution phase anion and cation binding studies revealed that the systems can be in fact as viable sensors for anionic guest.

Versatilities of Calix[4]pyrrole Based Anion Receptors

  • Lee, Chang-Hee
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.3
    • /
    • pp.768-778
    • /
    • 2011
  • Calixpyrroles and related macrocycles are non-planer synthetic anion receptors that have attracted considerable attentions in recent years. Although the synthesis of calix[4]pyrrole (known as meso-octamethylporphyrinogen) was reported more than 100 years ago, the anion binding properties were first discovered in 1996. The simple calix[4]pyrroles can be synthesized in single step in high yield by condensation of pyrrole with acetone. The compounds showed preferential binding for halide anions including fluoride, phosphate, carboxylate, and chloride in organic media. Efforts to improve the anion affinity of calix[4]pyrrole and to enhance its selectivity have led to the synthesis of a variety of new calixpyrrole derivatives. Among the various modifications, introduction of straps on one side of the calix[4]pyrroles are the most effective. Incorporation of aromatic rings other than pyrroles also exhibited interesting binding behaviour. Introduction of signalling units as part of the strapping element enable to detect the anions on chromogenic or fluorogenic fashion. Finding of the anion transport properties across the membrane and cytotoxic effects of the calix[4]pyrroles open new window for calixpyrrole-related research. The polymer-incorporated systems have also been employed as anion complexants in solvent-solvent extraction. These old, yet easy-to-make macrocycles have well advanced more recently with the discovery of the ion-pair complexation properties. In this review, the synthetic developments and anion binding properties of calixpyrroles for the last decades will be discussed and will cover the advances in calixpyrrole chemistry.

Thallium(I)-Selective Electrodes Based on Calix[4]pyrroles

  • Park, Gyeong Sun;Jeong, Seong Uk;Lee, Sim Seong;Kim, Jae Sang
    • Bulletin of the Korean Chemical Society
    • /
    • v.21 no.9
    • /
    • pp.909-912
    • /
    • 2000
  • Thallium(I) selective electrodes based on meso-alkyl substituted calix[4]pyrroles such as, meso-octamethyl-calix[4]pyrrole (L1), meso-octaethylcalix[4]pyrrole (L2) and meso-tetraspirocyclohexylcalix[4]pyrrole (L3) as sensor molecules have been pre pared and tested. The conditioned electrode (E4) incorporating L3gave best results with a wide working concentration range of 10-5.5 ~10-1 M near-Nernstian slope of 56.0 mV/decade of activity and detection limit of 10-6.0 M. This electrode exhibited a fast response time of 30 s and high selectivity over Na+ , K+ and other metal ions with only Ag+ interfering. The electrode works well in the pH range 2.0-11.0 and can be successfully employed for the determination of Tl+.This proposed electrode was also used as an indicator electrode in potentiometric titration of Tl+.

A Calix[4]pyrrole Bearing a Quaternary Ammonium Group: A Fluoride-Selective Anion Receptor

  • Oh, Ju Hyun;Lee, Joon Hwa;Kim, Sung Kuk
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.25 no.4
    • /
    • pp.45-50
    • /
    • 2021
  • A calix[4]pyrrole (1) bearing a quaternary ammonium pendant via its meso phenoxy linker has been synthesized as the bromide salt form. It was revealed by 1H NMR spectroscopic analyses performed in DMSO-d6 that receptor 1 binds F- with high affinity and selectivity over other halide anions. The binding of receptor 1•Br- with F- and Cltakes place by anion metathesis with the anions including F- and Cl-.

Calix-Arene based phase transfer catalysts fornucleophilic fluorination

  • Minji Nam;Dong Wook Kim
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.7 no.2
    • /
    • pp.141-146
    • /
    • 2021
  • With increasing interest in fluorinated compounds, nucleophilic fluorination reaction has been generally used for synthesizing fluorine-containing chemicals. However, alkali metal fluorides (MFs) generally have low solubility and reactivity in organic solvent. To overcome these problems, various phase transfer catalysts (PTCs) have been investigated. Calix-arene is known as to capture the metal cation(M+), and therefore in this review, we would like to introduce several kinds of calix-arene based PTCs, such as bis-tert-alcohol-functionalized crown-6-calix[4]arene (BACCA), oligo-ethylene glycol linked bis-triethyleneglycol crown-5-calix[4]arene (BTC5A), and ionic liquid functionalized calix-arene based catalyst, as well as ion-pair receptor crown-6-calix[4]arene-capped calix[4]pyrrole.