DOI QR코드

DOI QR Code

Multichannel Quantum Defect Theory Analysis of Overlapping Resonance Structures in Lu-Fano Plots of Rare Gas Spectra

  • Published : 2009.08.20

Abstract

Although overlapping resonances have been studied extensively in conventional resonance theories, there have not been many studies on them in multichannel quantum defect theories (MQDT). In MQDT, overlapping resonances occur between the channels instead of states, which pose far greater difficulty. Their systematic treatment was obtained for cases involving degenerate closed channels by applying our previous theory, which decouples background scattering from the resonance scattering in the MQDT formulation. The use of mathematical theory on con-diagonalization and con-similarity was essential for handling the non-Hermitian symmetric complex matrix. Overlapping resonances in rare gas spectra of Ar, Kr and Xe were analyzed using this theory and the results were compared with the ones of the previous alternative parameterizations of MQDT which make the open-open part $K^{oo}$ and closed-closed part $K^{cc}$ of reactance submatrices zero. The comparison revealed that separation of background and resonance scatterings achieved in our formulation in a systematic way was not achieved in the representation of $K^{oo}\;=\;0\;and\;K^{cc}$ = 0 when overlapping resonances are present.

Keywords

References

  1. Seaton, M. J. Rep. Prog. Phys. 1983, 46, 167 https://doi.org/10.1088/0034-4885/46/2/002
  2. Fano, U.; Rau, A. R. P. Atomic Collisions and Spectra; Academic: Orlando, U. S. A., 1986
  3. Jungen, C. Molecular Applications of Quantum Defect Theory; Institute of Physics: Bristol, UK, 1996
  4. Eissner, W.; Nussbaumer, H.; Saraph, H. E.; Seaton, M. J. J. Phys. B 1969, 2, 341 https://doi.org/10.1088/0022-3700/2/3/305
  5. Cooke, W. E.; Cromer, C. L. Phys. Rev. A 1985, 32, 2725 https://doi.org/10.1103/PhysRevA.32.2725
  6. Giusti-Suzor, A.; Fano, U. J. Phys. B 1984, 17, 215 https://doi.org/10.1088/0022-3700/17/2/008
  7. Giusti-Suzor, A.; Lefebvre-Brion, H. Phys. Rev. A 1984, 30, 3057 https://doi.org/10.1103/PhysRevA.30.3057
  8. Ueda, K. Phys. Rev. A 1987, 35, 2484 https://doi.org/10.1103/PhysRevA.35.2484
  9. Lecomte, J. M. J. Phys. B 1987, 20, 3645 https://doi.org/10.1088/0022-3700/20/15/014
  10. Wintgen, D.; Friedrich, H. Phys. Rev. A 1987, 35, 1628 https://doi.org/10.1103/PhysRevA.35.1628
  11. Fano, U. Phys. Rev. 1961, 124, 1866 https://doi.org/10.1103/PhysRev.124.1866
  12. Lee, C.-W. Bull. Korean Chem. Soc. 2002, 23, 971 https://doi.org/10.5012/bkcs.2002.23.7.971
  13. Lee, C.-W.; Kim, J.-H. Bull. Korean Chem. Soc. 2002, 23, 1560 https://doi.org/10.5012/bkcs.2002.23.11.1560
  14. Lee, C.-W. Phys. Rev. A 2002, 66, 052704 https://doi.org/10.1103/PhysRevA.66.052704
  15. Lee, C.-W. Bull. Korean Chem. Soc. 2009, 30, 891 https://doi.org/10.5012/bkcs.2009.30.4.891
  16. Wigner, E. P. Ann. Math. 1951, 53, 36 https://doi.org/10.2307/1969342
  17. Feshbach, H. Ann. Phys. (N.Y.) 1967, 43, 410 https://doi.org/10.1016/0003-4916(67)90163-7
  18. Mies, F. H. Phys. Rev. 1968, 175, 164 https://doi.org/10.1103/PhysRev.175.164
  19. McVoy, K. W. Ann. Phys. (N.Y.) 1969, 54, 552 https://doi.org/10.1016/0003-4916(69)90168-7
  20. Simonius, M. Nucl. Phys. A 1974, 218, 53 https://doi.org/10.1016/0375-9474(74)90019-0
  21. Lyuboshitz, V. L. Phys. Lett. B 1977, 72, 41 https://doi.org/10.1016/0370-2693(77)90058-2
  22. Connerade, J. P.; Lane, A. M. Rep. Prog. Phys. 1988, 51, 1439 https://doi.org/10.1088/0034-4885/51/11/002
  23. Magunov, A. I.; Rotter, I.; Strakhova, S. I. Phys. Rev. B 2003, 68, 245305 https://doi.org/10.1103/PhysRevB.68.245305
  24. Tabanli, M. M.; Peacher, J. L.; Madison, D. H. J. Phys. B 2003, 36, 217 https://doi.org/10.1088/0953-4075/36/2/304
  25. Lu, K. T.; Fano, U. Phys. Rev. A 1970, 2, 81 https://doi.org/10.1103/PhysRevA.2.81
  26. Lu, K. T. Phys. Rev. A 1971, 4, 579 https://doi.org/10.1103/PhysRevA.4.579
  27. Lee, C. M.; Lu, K. T. Phys. Rev. A 1973, 8, 1241 https://doi.org/10.1103/PhysRevA.8.1241
  28. Dill, D. Phys. Rev. A 1973, 7, 1976 https://doi.org/10.1103/PhysRevA.7.1976
  29. Geiger, J. Z. Phys. A 1976, 276, 219
  30. Geiger, J. Z. Phys. A 1977, 282, 129
  31. Johnson, W. R.; Cheng, K. T.; Huang, K. N.; Le Dourneuf, M. Phys. Rev. A 1980, 22, 989 https://doi.org/10.1103/PhysRevA.22.989
  32. Aymar, M.; Robaux, O.; Thomas, C. J. Phys. B 1981, 14, 4255 https://doi.org/10.1088/0022-3700/14/22/011
  33. Klar, D.; Aslam, M.; Baig, M. A.; Ueda, K.; Ruff, M. W.; Hotop, H. J. Phys. B 2001, 34, 1549 https://doi.org/10.1088/0953-4075/34/8/318
  34. Baig, M. A.; Hanif, M.; Aslam, M.; Bhatti, S. A. J. Phys. B 2006, 39, 4221 https://doi.org/10.1088/0953-4075/39/20/019
  35. Liang, L.; Jiang, W. X.; Zhou, C.; Zhang, L. Opt. Comm. 2008, 281, 2107 https://doi.org/10.1016/j.optcom.2007.12.020
  36. Wright, J. D.; Morgan, T. J.; Li, L. P.; Gu, Q. L.; Knee, J. L.; Petrov, I. D.; Sukhorukov, V. L.; Hotop, H. Phys. Rev. A 2008, 77, 062512 https://doi.org/10.1103/PhysRevA.77.062512
  37. Ueda, K. J. Opt. Soc. Am. B 1987, 4, 424 https://doi.org/10.1364/JOSAB.4.000424
  38. Mullins, O. C.; Zhu, Y.; Xu, E. Y.; Gallagher, T. F. Phys. Rev. A 1985, 32, 2234 https://doi.org/10.1103/PhysRevA.32.2234
  39. Giusti-Suzor, A.; Fano, U. J. Phys. B 1984, 17, 4277 https://doi.org/10.1088/0022-3700/17/21/016
  40. Dubau, J.; Seaton, M. J. J. Phys. B 1984, 17, 381 https://doi.org/10.1088/0022-3700/17/3/010
  41. Ralchenko, Y.; Kramida, A. E.; Reader, J.; NIST ASD Team; NIST Atomic Spectra Database (version 3.1.5).; National Institute of Standards and Technology: Gaithersburg, U. S. A., 2008
  42. Macklin, P. A. Am. J. Phys. 1984, 52, 513 https://doi.org/10.1119/1.13860
  43. Horn, R. A.; Johnson, C. R. Matrix Analysis; Cambridge: Cambridge, U. K., 1985
  44. Muir, T. A Treatise on the Theory of Determinants; Dover: New York, U. S. A., 1960
  45. Fano, U. Rev. Mod. Phys. 1957, 29, 74 https://doi.org/10.1103/RevModPhys.29.74
  46. Lee, C.-W. Phys. Essays 2000, 13, 206 https://doi.org/10.4006/1.3028813
  47. Fano, U.; Cooper, J. W. Phys. Rev. A 1965, 137, 1364
  48. Smith, F. T. Phys. Rev. 1960, 118, 349 https://doi.org/10.1103/PhysRev.118.349
  49. Lippmann, B. A. Phys. Rev. 1966, 151, 1023 https://doi.org/10.1103/PhysRev.151.1023

Cited by

  1. Effect of Open Channels on the Isolation of Overlapping Resonances in the Uniformly Perturbed Rydberg Systems Studied by Multichannel Quantum Defect Theory vol.32, pp.5, 2011, https://doi.org/10.5012/bkcs.2011.32.5.1519
  2. Inter-Series Interactions on the Atomic Photoionization Spectra Studied by the Phase-Shifted Multichannel-Quantum Defect Theory vol.5, pp.2, 2017, https://doi.org/10.3390/atoms5020021
  3. Multichannel Quantum-Defect Study of q reversals in Overlapping Resonances in Systems involving 1 Open and 2 Closed Channels vol.31, pp.2, 2009, https://doi.org/10.5012/bkcs.2010.31.02.315
  4. Isolation of overlapping resonances by multichannel quantum defect theory in the uniformly perturbed Rydberg systems involving one open and many degenerate closed channels vol.43, pp.17, 2009, https://doi.org/10.1088/0953-4075/43/17/175002
  5. Analytical Property of Scattering Matrix:Spectroscopy Phenomena and Sharp Overlapping Autoionization Resonances vol.7, pp.None, 2009, https://doi.org/10.1038/s41598-017-11823-8