DOI QR코드

DOI QR Code

Effects of Amino Substitution on the Excited State Hydrogen Transfer in Phenol: A TDDFT Study

  • Kim, Sang-Su (Department of Chemistry, Ajou University) ;
  • Kim, Min-Ho (Division of Energy Systems Research, Ajou University) ;
  • Kang, Hyuk (Department of Chemistry, Ajou University)
  • Published : 2009.07.20

Abstract

When isolated phenol or a small phenol-solvent cluster is excited to the $S_1\;state\;of\;{\pi}{\pi}^*$ character, the hydrogen atom of the hydroxyl group dissociates via a ${\pi}{\sigma}^*$ state that is repulsive along the O-H bond. We computationally investigated the substitution effects of an amino group on the excited state hydrogen transfer reaction of phenol. The time-dependent density functional theory (TDDFT) with B3LYP functional was employed to calculate the potential energy profiles of the ${\pi}{\pi}^*$ and the ${\pi}{\sigma}^*$ excited states along the O-H coordinate, together with the orbital shape at each point, as the position of the substituent was varied. It was found that the amino substitution has an effect of lowering the ${\pi}{\sigma}^*$ state and enhancing the excited state hydrogen transfer reaction.

Keywords

References

  1. Sobolewski, A. L.; Domcke, W.; Dedonder-Lardeux, C.; Jouvet, C. Phys. Chem. 2002, 4(7), 1093 https://doi.org/10.1039/b110941n
  2. David, O.; Dedonder-Lardeux, C.; Jouvet, C. Intl. Rev. Phys. Chem. 2002, 21(3), 499 https://doi.org/10.1080/01442350210164287
  3. Syage, J. A. J. Phys. Chem. 1995, 99(16), 5772 https://doi.org/10.1021/j100016a009
  4. Pino, G. A. et al. J. Chem. Phys. 1999, 111(24), 10747 https://doi.org/10.1063/1.480437
  5. Grégoire, G. et al. J. Phys. Chem. A 2000, 104, 9087 https://doi.org/10.1021/jp001475f
  6. Pino, G. et al. Phys. Chem. Chem. Phys. 2000, 2(4), 893 https://doi.org/10.1039/a908497e
  7. Grégoire, G. et al. J. Phys. Chem. A 2001, 105, 5971 https://doi.org/10.1021/jp0046039
  8. Tsuji, N. et al. Phys. Chem. Chem. Phys. 2006, 8(1), 114 https://doi.org/10.1039/b511619h
  9. Devine, A. L.; Nix, M. G. D.; Cronin, B.; Ashfold, M. N. R. Phys. Chem. Chem. Phys. 2007, 9(28), 3749 https://doi.org/10.1039/b704146b
  10. King, G. A. et al. Phys. Chem. Chem. Phys. 2008, 10(42), 6417 https://doi.org/10.1039/b809250h
  11. Lim, I. S.; Lim, J. S.; Lee, Y. S.; Kim, S. K. J. Chem. Phys. 2007, 126(3)
  12. Lim, J. S. et al. Angew. Chem. Int. Ed. 2006, 45(38), 6290 https://doi.org/10.1002/anie.200601985
  13. Devine, A. L.; Nix, M. G. D.; Dixon, R. N.; Ashfold, M. N. R. J. Phys. Chem. A 2008, 112(39), 9563 https://doi.org/10.1021/jp802019v
  14. David, O. et al. J. Chem. Phys. 2004, 120(21), 10101 https://doi.org/10.1063/1.1704639
  15. Dedonder-Lardeux, C.; Grosswasser, D.; Jouvet, C.; Martrenchard, S. Phys. Chem. Comm. 2001, 4, 21
  16. David, O.; Dedonder-Lardeux, C.; Jouvet, C.; Sobolewski, A. L. J. Phys. Chem. A 2006, 110(30), 9383 https://doi.org/10.1021/jp062950y
  17. Sobolewski, A. L.; Domcke, W. J. Phys. Chem. A 2001, 105 (40), 9275 https://doi.org/10.1021/jp011260l
  18. Dedonder-Lardeux, C.; Jouvet, C.; Perun, S.; Sobolewski, A. L. Phys. Chem. Chem. Phys. 2003, 5(22), 5118
  19. Frisch, M. J. et al. Gaussian 03; Gaussian, Inc.: Wallingford CT, 2004
  20. Flükiger, H. P.; Lüthi, S.; Portmann, J. W. MOLEKEL, 5.3; Swiss National Supercomputing Centre CSCS: Manno (Switzerland), 2000
  21. Dreuw, A.; Head-Gordon, M. J. Am. Chem. Soc. 2004, 126(12), 4007 https://doi.org/10.1021/ja039556n
  22. Sobolewski, A. L.; Domcke, W. Eur. Phys. J. D 2002, 20(3), 369 https://doi.org/10.1140/epjd/e2002-00164-5
  23. Mori, H. et al. Chem. Phys. 2002, 277(2), 105 https://doi.org/10.1016/S0301-0104(02)00308-7
  24. Gerhards, M.; Unterberg, C. Appl. Phys. A 2001, 72, 273 https://doi.org/10.1007/s003390100765
  25. Jansen, A.; Gerhards, M. J. Chem. Phys. 2001, 115(12), 5445 https://doi.org/10.1063/1.1394753
  26. Meenakshi, P. S.; Biswas, N.; Wategaonkar, S. J. Chem. Phys. 2002, 117(24), 11146 https://doi.org/10.1063/1.1523059
  27. Wategaonkar, S.; Doraiswamy, S. J. Chem. Phys. 1996, 105(5), 1786 https://doi.org/10.1063/1.472054
  28. Robinson, T. W. et al. J. Phys. Chem. A 2004, 108(20), 4420 https://doi.org/10.1021/jp037577y
  29. Shinozaki, M. et al. Phys. Chem. Chem. Phys. 2003, 5(22), 5044 https://doi.org/10.1039/b309461h

Cited by

  1. Solvent effect on electron and proton transfer in the excited state of a hydrogen bonded phenol-imidazole complex vol.4, pp.73, 2009, https://doi.org/10.1039/c4ra05306k
  2. Activation of C-H, N-H, and O-H Bonds via Proton-Coupled Electron Transfer to a Mn(III) Complex of Redox-Noninnocent Octaazacyclotetradecadiene, a Catenated-Nitrogen Macrocyclic Ligand vol.141, pp.14, 2009, https://doi.org/10.1021/jacs.8b10250
  3. On-the-fly ab initio semiclassical evaluation of third-order response functions for two-dimensional electronic spectroscopy vol.153, pp.18, 2009, https://doi.org/10.1063/5.0031216