DOI QR코드

DOI QR Code

Facile Route to Laterally Graded Nanotemplate

  • Kim, Tae-Hyeong (Department of Chemical Engineering, Kyungpook National University) ;
  • Lee, Mi-Sun (Department of Chemical Engineering, Kyungpook National University) ;
  • Jung, Seung-Ho (Department of Chemical Engineering, Pohang University of Science and Technology) ;
  • Jeong, Soo-Hwan (Department of Chemical Engineering, Kyungpook National University)
  • Published : 2009.05.20

Abstract

Preparation of graded materials displaying gradients of desired properties is one of the important issues and less-developed areas in materials chemistry. For the first time we demonstrate facile control of porosity and length in the pores of AAO template in lateral directions by controlled dipping method. To demonstrate the versatility of the proposed method, laterally graded silica nanotubes are also prepared by using the laterally graded AAO templates. The method demonstrated here will open numerous possibilities for obtaining a variety of graded materials with lateral gradients of catalytic, electrochemical, mechanical and optical properties on the nanoscale.

Keywords

References

  1. Suresh, S. Science 2001, 292, 2447 https://doi.org/10.1126/science.1059716
  2. Ho, P. H. H.; Kim, J. S.; Burroughes, J. H.; Becker, H.; Li, S. F. Y.; Brown, T. M.; Cacialli, F.; Friend, R. H. Nature 2000, 404, 481 https://doi.org/10.1038/35006610
  3. Shao, Y.; Yang, Y. Appl. Phys. Lett. 2003, 83, 2453 https://doi.org/10.1063/1.1605800
  4. Neubrand, A. J. Appl. Electrochem. 1998, 28, 1179 https://doi.org/10.1023/A:1003457008294
  5. Jayaraman, S.; Hillier, A. C. Langmuir 2001, 17, 7857 https://doi.org/10.1021/la010930b
  6. Terrill, R. H.; Balss, K. M.; Zhang, Y. M.; Bohn, P. W. J. Am. Chem. Soc. 2000, 122, 988 https://doi.org/10.1021/ja993442n
  7. Sehayek, T.; Bendikov, T.; Vaskevich, A.; Rubinstein, I. Adv. Func. Mater. 2006, 16, 693 https://doi.org/10.1002/adfm.200500655
  8. Einaga, Y.; Kim, G. S.; Ohnishi, K.; Park, S. G.; Fujishima, A. Mater. Sci. Eng. B 2001, 83, 19 https://doi.org/10.1016/S0921-5107(00)00559-6
  9. Che, G.; Lakshmi, B. B.; Fisher, E. R.; Martin, M. R. Nature 1998, 393, 346 https://doi.org/10.1038/30694
  10. Li, J.; Papadopoulos, C.; Xu, J. M.; Moskovits, M. Appl. Phys. Lett. 1999, 75, 367 https://doi.org/10.1063/1.124377
  11. Jeong, S. H.; Lee, O. J.; Lee, K. H.; Oh, S. H.; Park, C. G. Chem. Mater. 2002, 14, 4003 https://doi.org/10.1021/cm020302v
  12. Wu, G.; Zhang, L.; Cheng, B.; Xie, T.; Yuan, X. J. Am. Chem. Soc. 2004, 126, 5976 https://doi.org/10.1021/ja039012l
  13. Lee, J. S.; Suh J. S. Bull. Korean Chem. Soc. 2003, 24, 1827 https://doi.org/10.5012/bkcs.2003.24.12.1827
  14. Li, F.; He, J.; Zhou, W. L.; Wiley, J. B. J. Am. Chem. Soc. 2003, 125, 16166 https://doi.org/10.1021/ja038452+
  15. Lu, Q.; Gao, F.; Komarneni, S.; Mallouk, T. E. J. Am. Chem. Soc. 2004, 126, 8650 https://doi.org/10.1021/ja0488378
  16. Hoyer, P.; Baba, N.; Masuda, H. Appl. Phys. Lett. 1995, 66, 2700 https://doi.org/10.1063/1.113493
  17. Kouklin, N.; Menon, L.; Bandyopadhyay, S. Appl. Phys. Lett. 2002, 80, 1649 https://doi.org/10.1063/1.1458683
  18. Cheng, G.; Moskovits, M. Adv. Mater. 2002, 14, 1567 https://doi.org/10.1002/1521-4095(20021104)14:21<1567::AID-ADMA1567>3.0.CO;2-K
  19. Jung, J.-S.; Malkinski, L.; Lim, J.-H.; Yu, M.; O'Connor, C. J.; Lee, H.-O.; Kim, E.-M. Bull. Korean Chem. Soc. 2008, 29, 758 https://doi.org/10.5012/bkcs.2008.29.4.758
  20. Sehayek, T.; Vaskevich, A.; Rubinstein, I. J. Am. Chem. Soc. 2003, 125, 4718 https://doi.org/10.1021/ja029877j
  21. Lee, S. B.; Mitchell, D. T.; Trofin, L.; Li, N.; Nevanen, T. K.; Soderlund, H.; Martin, C. R. J. Am. Chem. Soc. 2002, 124, 11864 https://doi.org/10.1021/ja027247b
  22. He, B.; Son, S. J.; Lee, S. B. Langmuir 2006, 22, 8263 https://doi.org/10.1021/la060187t
  23. Masuda, H.; Fukuda, K. Science 1995, 268, 1466 https://doi.org/10.1126/science.268.5216.1466
  24. Masuda, H.; Satoh, M. Jpn. J. Appl. Phys. 1996, 35, L126 https://doi.org/10.1143/JJAP.35.L126
  25. Kovtyukhova, N. I.; Mallouk, T. E.; Mayer, T. S. Adv. Mater. 2003, 15, 780 https://doi.org/10.1002/adma.200304701
  26. Chuang, S. F.; Collins, S. D.; Smith, R. Appl. Phys. Lett. 1989, 55, 675 https://doi.org/10.1063/1.101819
  27. Parkhutik, V.; Matveeva, E. S.; Namavar, F. J. Electrochem. Soc. 1996, 143, 3943 https://doi.org/10.1149/1.1837320
  28. Macak, J. M.; Tsuchiya, H.; Taveira, L.; Aldabergerova, S.; Schmuki, P. Angew. Chem., Int. Ed. 2005, 44, 7463 https://doi.org/10.1002/anie.200502781
  29. Shankar, K.; Mor, G. K.; Prakasam, H. E.; Yoriya, S.; Paulose, M.; Varghese, O. K.; Grimes, C. A. Nanotechnology 2007, 18, 065707 https://doi.org/10.1088/0957-4484/18/6/065707
  30. Shin, Y.; Lee, S. Nano. Lett. 2008, 8, 3171 https://doi.org/10.1021/nl801422w
  31. Tsuchiya, H.; Schmuki, P. Electrochem. Commun. 2005, 7, 49 https://doi.org/10.1016/j.elecom.2004.11.004
  32. Tsuchiya, H.; Macak, J. M.; Ghicov, A.; Taveira, L.; Schmuki, P. Corros. Sci. 2005, 47, 3324 https://doi.org/10.1016/j.corsci.2005.05.041
  33. Lee, W.; Smyrl, W. H. Electrochem. Solid-State Lett. 2005, 8, B7 https://doi.org/10.1149/1.1857115
  34. Wei, W.; Macak, J. M.; Schmuki, P. Electrochem. Commun. 2008, 10, 428 https://doi.org/10.1016/j.elecom.2008.01.004
  35. Choi, J.; Lim, J. H.; Lee, S. C.; Chang, J. H.; Kim, K. J.; Cho, M. A. Electrochim. Acta 2006, 51, 5502 https://doi.org/10.1016/j.electacta.2006.02.024
  36. Berger, S.; Tsuchiya, A.; Ghicov, A.; Schmuki, P. Appl. Phys. Lett. 2006, 88, 203119-1 https://doi.org/10.1063/1.2206696