DOI QR코드

DOI QR Code

대향식 스퍼터링법으로 증착된 ITO 양극 위에 제작된 OLED 성능

Performance of OLED Fabricated on the ITO Deposited by Facing Target Sputtering

  • 윤철 (한국기술교육대학교 신소재공학과) ;
  • 김상호 (한국기술교육대학교 신소재공학과)
  • Yoon, Chul (Dept. of Materials Engineering, Korea University of Technology and Education) ;
  • Kim, Sang-Ho (Dept. of Materials Engineering, Korea University of Technology and Education)
  • 발행 : 2008.10.31

초록

Indium tin oxide (ITO) has been commonly used as an anode for organic light emitting diode (OLED), because of its relatively high work function, high transmittance, and low resistance. The ITO was mostly deposited by capacitive type DC or RF sputtering. In this study we introduced a new facing target sputtering method. On applying this new sputtering method, the effect of fundamental deposition parameters such as substrate heating and post etching were investigated in relation to the resultant I-V-L characteristics of OLED. Three kinds of ITOs deposited at room temperature, at $400^{\circ}C$ and at $400^{\circ}C$ with after surface modification by $O_2$ plasma etching were compared. The OLED on ITO deposited with substrate heating and followed by etching showed better I-V-L characteristics, which starts to emit light at 4 volts and has luminescence of $65\;cd/m^2$ at 9 volts. The better I-V-L characteristics were ascribed to the relevant surface roughness with uniform micro-extrusions and to the equi-axed micromorphology of ITO surface.

키워드

참고문헌

  1. B. Choi, H. Yoon, H.H. Lee, Appl. Phys. Lett., 76 (2000) 412 https://doi.org/10.1063/1.125771
  2. C. T. Lee, B. T. Tang, H. Y. Lee, Thin Solid Films, 386 (2001) 105 https://doi.org/10.1016/S0040-6090(01)00777-5
  3. Z. Z. You, J. Y. Dong, Microelectron. J., 38 (2007) 108 https://doi.org/10.1016/j.mejo.2006.09.019
  4. J. Schwarz, E. L. Bruner, N. Koch, A. R. Span, S. L. Bernasek, A. Kahn, Synth. Met., 138 (2003) 425
  5. X. H. Sun, L. F. Cheng, M. W. Liu, L. S. Liao, N. B. Wong, C. S. Lee, S. T. Lee, Chem. Phys. Lett., 370 (2003) 425 https://doi.org/10.1016/S0009-2614(03)00135-0
  6. I. M. Chan, T. Y. Hsu, F. C. Hong, Appl. Phys. Lett., 81 (2002) 1899 https://doi.org/10.1063/1.1505112
  7. T. J. Marks, J. G. C. Veinot, J. Cui, H. Yan, A. Wang, N. L. Edleman, J. Ni, Q. Huang, P. Lee, N. R. Armstrong, Synth. Met., 127 (2002) 29 https://doi.org/10.1016/S0379-6779(01)00593-8
  8. A. J. Freeman, K. R. Poeppelemier, T. D. Mason, R. P. H. Chang, T. J. Marks, MRS Bull., 25 (2000) 45
  9. J. S. Lim, P. K. Shin, Appl. Surf. Sci., 253 (2007) 2828
  10. S. M. Joeng, W. H. Koo, S. H. Choi, S. J. Jo, H. K. Baik, S. J Lee, K. M. Song, Thin Solid Films, 475 (2005) 227 https://doi.org/10.1016/j.tsf.2004.07.048
  11. U. Mitschke, P. Bauerle, J. Mater. Chem., 10 (2000) 1471 https://doi.org/10.1039/a908713c
  12. H. Heil, J. Steiger, S. Karg, M. Gastel, H. Ortner, H. V. Seggern, M. Stobel, J. Appl. Phys., 89 (2001) 420 https://doi.org/10.1063/1.1331651
  13. M. A. Baldo, M. E. Thompson, S. P. Forrest, Nature 403 (2000) 750 https://doi.org/10.1038/35001541
  14. B. S. Chiou, S. T. Hsieh, W. F. Wu, J. Am. Cera. Soc., 77 (1994) 1740 https://doi.org/10.1111/j.1151-2916.1994.tb07044.x
  15. G. K. Li, J. J. Shen, W. B. Mi, Z. Q. Li, P. Wu, E. Y. Jiang, H. L. Ba, Appl. Surf. Sci., 253 (2006) 425 https://doi.org/10.1016/j.apsusc.2005.12.080
  16. S. Nakamura, T. Aoki, T. Kittaka, R. Hakamata, H. Tabuchi, S. Kunitsugu, K. Takarable, Thin Solid Films, 515 (2007) 8205 https://doi.org/10.1016/j.tsf.2007.02.038
  17. K. Noda, T. Hirata, T. Kawanabe, M. Naoed, Vacuum, 51 (1998) 687 https://doi.org/10.1016/S0042-207X(98)00275-9
  18. T. J. Vink, W. Walrave, J. L. C Daams, P. C. Baarslag, J. E. A. M. van den Meerakker, Thin Solid Films, 266 (1995) 145 https://doi.org/10.1016/0040-6090(95)06818-X
  19. S. Uthanna, P. S. Reddy, B. S. Naidu, P. J. Reddy, Vacuum, 47 (1996) 91 https://doi.org/10.1016/0042-207X(95)00199-9
  20. J. T. Kim, C. Yoon, S. H. Kim, H. T. Shin, EMRS 2008 Fall Meeting, (2008) 53
  21. Hamberg, C. G. Granqvist, J. Appl. Phys., 60 (1986) 1 https://doi.org/10.1063/1.337680