Age- and Area-Dependent Distinct Effects of Ethanol on Bax and Bcl-2 Expression in Prenatal Rat Brain

  • Lee, Hae-Young (Division of Life Science and Applied Life Science (Brain Korea 21), Gyeongsang National University) ;
  • Naha, Nibedita (Division of Life Science and Applied Life Science (Brain Korea 21), Gyeongsang National University) ;
  • Kim, Jong-Hun (Division of Life Science and Applied Life Science (Brain Korea 21), Gyeongsang National University) ;
  • Jo, Mi-Ja (Division of Life Science and Applied Life Science (Brain Korea 21), Gyeongsang National University) ;
  • Min, Kwan-Sik (Animal Biotechnology, GSBIT, Hankyong National University) ;
  • Seong, Hwan-Hoo (Animal Biotechnology Division, National Institute of Animal Science, RDA) ;
  • Shin, Dong-Hoon (Department of Food and Biotechnology, Korea University) ;
  • Kim, Myeong-Ok (Division of Life Science and Applied Life Science (Brain Korea 21), Gyeongsang National University)
  • Published : 2008.09.30

Abstract

Cell proliferation and differentiation are critical processes in a developing fetal rat brain, during which programmed cell death (PCD) also plays an important role. One of the decisive factors for PCD is Bcl-2 family proteins, where Bax induces cell death, whereas Bcl-2 acts as an inhibitor of PCD. As maternal drinking is known to cause fetal alcohol syndrome (FAS) or malformation of the fetal brain during pregnancy, the objective of the present study was to investigate whether maternal ethanol exposure alters the PCD-related Bax and Bcl-2 protein expression during fetal brain development. Pregnant female rats were orally treated with 10% ethanol and the subsequent expressions of the Bax and Bcl-2 proteins examined in the fetal brain, including the forebrain, midbrain, and hindbrain, from gestational day (GD) 15.5 to GD 19.5, using Western blots, in situ hybridization, and immunohistochemistry. With regard to the ratio of Bcl-2 to Bax proteins (Bcl-2/Bax), the Bax protein was dominant in the forebrain and midbrain of the control GD 15.5 fetuses, except for the hindbrain, when compared with the respective ethanol-treated groups. Moreover, Bcl-2 became dominant in the midbrain of the control GD 17.5 fetuses when compared with the ethanol-treated group, representing an alternation of the natural PCD process by ethanol. Furthermore, a differential expression of the Bcl-2 and Bax proteins was found in the differentiating and migrating zones of the cortex, hippocampus, thalamus, and cerebellum. Thus, when taken together, the present results suggest that ethanol affects PCD in the cell differentiation and migration zones of the prenatal rat brain by modulating Bax and Bcl-2 expression in an age- and area-dependent manner. Therefore, this is the first evidence that ethanol may alter FAS-associated embryonic brain development through the alteration of Bax and Bc1-2 expression.

Keywords

References

  1. Adrain, C. and S. J. Martin. 2001. The mitochondrial apoptosome: A killer unleashed by the cytochrome c. Trends Biochem. Sci. 26: 390-397 https://doi.org/10.1016/S0968-0004(01)01844-8
  2. Altman, J. and S. A. Bayer. 1995. Atlas of Prenatal Rat Brain Development, pp. 206-467. CRC Press, Florida, U.S.A
  3. Bibel, M. and Y. A. Barde. 2000. Neurotrophins: Key regulators of cell fate and cell shape in the vertebrate nervous system. Genes Dev. 14: 2919-2937 https://doi.org/10.1101/gad.841400
  4. Blaschke, A. J., K. Staley, and J. Chun. 1996. Widespread programmed cell death in proliferative and postmitotic regions of the fetal cerebral cortex. Development 122: 1165-1174
  5. Cecconi, F., G. Alvarez-Bolado, B. I. Meyer, K. A. Roth, and P. Gruss. 1998. Apaf1 (CED-4 homolog) regulates programmed cell death in mammalian development. Cell 94: 727-737 https://doi.org/10.1016/S0092-8674(00)81732-8
  6. Clarren, S. K., E. C. Alvord Jr., S. M. Sumi, A. P. Streissguth, and D. W. Smith. 1978. Brain malformations related to prenatal exposure to ethanol. J. Pediatrics 92: 64-67 https://doi.org/10.1016/S0022-3476(78)80072-9
  7. Cory, S. and J. M. Adams. 2002. The Bcl-2 family: Regulators of the cellular life-or-death switch. Nat. Rev. Cancer 2: 647-656 https://doi.org/10.1038/nrc883
  8. de la Monte, S. M. and J. R. Wand. 2001. Mitochondrial DNA damage and impaired mitochondrial function contribute to apoptosis of insulin-stimulated ethanol-exposed neuronal cells. Alcohol Clin. Exp. Res. 25: 898-906 https://doi.org/10.1111/j.1530-0277.2001.tb02296.x
  9. de la Monte, S. M. and J. R. Wand. 2002. Chronic gestational exposure to ethanol impairs insulin-stimulated survival and mitochondrial function in cerebellar neurons. Cell. Mol. Life Sci. 59: 882-893 https://doi.org/10.1007/s00018-002-8475-x
  10. Gogvadze, V., J. D. Robertson, B. Zhivotovsky, and S. Orrenius. 2001. Cytochrome c release occurs via $Ca^{2+}-dependent$ and $Ca^{2+}-independent$ mechanisms that are regulated by Bax. J. Biol. Chem. 276: 19066-19071 https://doi.org/10.1074/jbc.M100614200
  11. Gohlke, J. M., W. C. Griffith, S. M. Bartell, T. A. Lewandowski, and E. M. Faustman. 2002. A computational model for neocortical neurogenesis predicts ethanol-induced neocortical neuron number deficits. Dev. Neurosci. 24: 467-477 https://doi.org/10.1159/000069357
  12. Hakem, R., A. Hakem, G. S. Duncan, J. T. Henderson, M. Woo, M. S. Soengas, et al. 1998. Differential requirement for caspase 9 in apoptotic pathways in vivo. Cell 94: 339-352 https://doi.org/10.1016/S0092-8674(00)81477-4
  13. Hirai, K., H. Yoshioka, M. Kihara, K. Hasegawa, T. Sawada, and S. Fushiki. 1999. Effects of ethanol on neuronal migration and neural cell adhesion molecules in the embryonic rat cerebral cortex: A tissue culture study. Brain Res. Dev. Brain Res. 118: 205-210 https://doi.org/10.1016/S0165-3806(99)00159-5
  14. Ikonomidou, C., P. Bittigau, M. J. Ishimaru, D. F. Wozniak, C. Koch, K. Genz, et al. 2000. Ethanol-induced apoptotic neurodegeneration and fetal alcohol syndrome. Science 287: 1056-1059 https://doi.org/10.1126/science.287.5455.1056
  15. Jinhee, B., D. Park, Y. S. Lee, and D. Jeoung. 2008. Interleukin- 2 promotes angiogenesis by activation of Akt and increase of ROS. J. Microbiol. Biotechnol. 18: 377-382
  16. Jones, K. L., D. W. Smith, C. N. Ulleland, and A. P. Streissguth. 1973. Pattern of malformation in offspring of chronic alcoholic mothers. Lancet 1: 1267-1271
  17. Dunty Jr., W. C., S. Y. Chen, R. M. Zucker, D. B. Dehart, and K. K. Sulik. 2001. Selective vulnerability of embryonic cell populations to ethanol-induced apoptosis: Implications for alcohol-related birth defects and neurodevelopmental disorder. Alcohol Clin. Exp. Res. 25: 1523-1535 https://doi.org/10.1111/j.1530-0277.2001.tb02156.x
  18. Jung, K. H. 2008. Enhanced enzyme activities of inclusion bodies of recombinant ${\beta}-galactosidase$ via the addition of inducer analog after L-arabinose induction in the araBAD promoter system of Escherichia coli. J. Microbiol. Biotechnol. 18: 434-442
  19. Kennedy, L. A. and M. J. Elliott. 1985. Cell proliferation in the embryonic mouse neocortex following acute maternal alcohol intoxication. Int. J. Dev. Neurosci. 3: 311-315 https://doi.org/10.1016/0736-5748(85)90063-2
  20. Roth, K. A. and C. D'sa. 2001. Apoptosis and brain development. Ment. Ratard. Dev. Disabil. Res. 7: 261-266 https://doi.org/10.1002/mrdd.1036
  21. Kim, M. O., S. P. Li, M. S. Park, and J. P. Hornung. 2003. Early fetal expression of GABA B1 and GABA B2 receptor mRNAs on the development of the rat central nervous system. Brain Res. Dev. Brain Res. 143: 47-55 https://doi.org/10.1016/S0165-3806(03)00099-3
  22. Krajewska, M. 2002. Dynamics of expression of apoptosisregulatory proteins Bid, Bcl-2, Bcl-X, Bax and Bak during development of murine nervous system. Cell Death Differ. 9: 145-157 https://doi.org/10.1038/sj.cdd.4400934
  23. Kuan, C. 2000. Mechanisms of programmed cell death in the developing brain. Trends Neurosci. 23: 291-297 https://doi.org/10.1016/S0166-2236(00)01581-2
  24. Kuida, K., T. F. Haydar, C. Y. Kuan, Y. Gu, C. Taya, H. Karasuyama, M. S. Su, P. Rakic, and R. A. Flavell. 1998. Reduced apoptosis and cytochrome c mediated caspase activation in mice lacking caspase 9. Cell 94: 325-337 https://doi.org/10.1016/S0092-8674(00)81476-2
  25. Kuida, K., T. S. Zheng, S. Na, C. Kuan, D. Yang, H. Karasuyama, P. Rakic, and R. A. Flavell. 1996. Decreased apoptosis in the brain and premature lethality in CPP32- deficient mice. Nature 384: 368-372 https://doi.org/10.1038/384368a0
  26. Lee, J. Y., J. Y. Kim, Y. G. Lee, M. H. Rhee, E. K. Hong, and J. Y. Cho. 2008. Molecular mechanism of macrophage activation by exopolysaccharides from liquid culture of Lentinus edodes. J. Microbiol. Biotechnol. 18: 355-364
  27. Maier, S. E., W. J. Chen, and J. R. West. 1996. The effects of timing and duration of alcohol exposure on development of the fetal brain, pp. 27-50. In E. L. Abel (ed.). Fetal Alcohol Syndrome: From Mechanism to Revention. CRC Press, Boca Raton, FL, U.S.A.
  28. Martin, Z., A. Hueber, W. Baum, and G. Evan. 2001. Apoptosis regulators and their role in tumorigenesis. Biochim. Biophys. Acta 1551: 1-37
  29. Miki, T., S. J. Harris, P. A. Wilce, Y. Takeuchi, and K. S. Bedi. 2001. Effects of alcohol exposure during early life on neuron numbers in the rat hippocampus, I. Hilus neurons and granule cells. Hippocampus 13: 388-398 https://doi.org/10.1002/hipo.10072
  30. Miller, M. W. 1993. Migration of cortical neurons is altered by gestational exposure to ethanol. Alcohol Clin. Exp. Res. 17: 304-314 https://doi.org/10.1111/j.1530-0277.1993.tb00768.x
  31. Miller, M. W. 1986. Effects of alcohol on the generation and migration of cerebral cortical neurons. Science 233: 1308-1311 https://doi.org/10.1126/science.3749878
  32. Miller, M. W. 1989. Effect of prenatal exposure to ethanol on the development of the cerebral cortex: II. Cell proliferation in the ventricular and subventricular zones of the rat. J. Comp. Neurol. 287: 326-338 https://doi.org/10.1002/cne.902870305
  33. Miller, M. W. 1992. Effects of prenatal exposure to ethanol on cell proliferation and neuronal migration, pp 47-69. In M. W. Miller (ed.). Development of the Central Nervous System: Effects of Alcohol and Opiates. Wiley-Liss, New York, U.S.A
  34. Montoliu, C., S. Valles, J. Renau-Piqueras, and C. Guerri. 1994. Ethanol-induced oxygen radical formation and lipid peroxidation in rat brain: Effect of chronic alcohol consumption. J. Neurochem. 63: 1855-1862 https://doi.org/10.1046/j.1471-4159.1994.63051855.x
  35. Mooney, S. M. and M. W. Miller. 2000. Expression of Bcl-2, Bax, and caspase-3 in the brain of the developing rat. Dev. Brain Res. 123: 103-117 https://doi.org/10.1016/S0165-3806(00)00081-X
  36. Mooney, S. M. and M. W. Miller. 2001. Effects of prenatal exposure to ethanol on the expression of Bcl-2, Bax and caspase 3 in the developing rat cerebral cortex and thalamus. Brain Res. 911: 71-81 https://doi.org/10.1016/S0006-8993(01)02718-4
  37. Olney, J. W., D. F. Wozniak, V. Jevtovic-Todorovic, N. B. Farber, P. Bittigau, and C. Ikonomidou. 2002. Drug-induced apoptotic neurodegeneration in the developing brain. Brain Pathol. 4: 488-498
  38. Raff, M. C., J. F. Barres, B. A. Barres, J. F. Burne, H. S. Coles, Y. Ishizaki, and M. D. Jacobson. 1993. Programmed cell death and the control of cells survival: Lesson from the nervous system. Science 262: 695-700 https://doi.org/10.1126/science.8235590
  39. Riley, E. P., S. N. Mattson, E. R. Sowell, T. L. Jernigan, D. F. Sobel, and K. L. Jones. 1995. Abnormalities of the corpus callosum in children prenatally exposed to alcohol. Alcohol Clin. Exp. Res. 19: 1198-1202 https://doi.org/10.1111/j.1530-0277.1995.tb01600.x
  40. Roth, K. A., C. Kuan, T. F. Haydar, C. D'Sa-Eipper, K. S. Shindler, T. S. Zheng, K. Kuida, R. A. Flavell, and P. Rakic. 2000. Epistatic and independent functions of caspase-3 and bcl-XL in developmental programmed cell death. Proc. Natl. Acad. Sci. USA 97: 466-471
  41. Sakata-Haga, H., K. Sawada, S. Hisano, and Y. Fukui. 2002. Administration schedule for an ethanol-containing diet in pregnancy affects types of offspring brain malformations. Acta Neuropathol. 104: 305-312
  42. Smith, S. M. 1997. Alcohol-induced cell death in the embryo. Alcohol Health Res. World 21: 296-297
  43. Snider, W. D. 1994. Functions of the neurotrophins during nervous system development: What the knockouts are teaching us. Cell 77: 627-638 https://doi.org/10.1016/0092-8674(94)90048-5
  44. Tenkova, T., C. Young, K. Dikranian, J. Labruyere, and J. W. Olney. 2003. Ethanol-induced apoptosis in the developing visual system during synaptogenesis. Invest. Ophthalmol. Vis. Sci. 44: 2809-2817 https://doi.org/10.1167/iovs.02-0982
  45. Yoshida, H., Y. Y. Kong, R. Yoshida, A. J. Elia, A. Hakem, R. Hakem, J. M. Penninger, and T. W. Mak. 1998. Apaf1 is required for mitochondrial pathways of apoptosis and brain development. Cell 94: 739-750 https://doi.org/10.1016/S0092-8674(00)81733-X