Antifungal Effect of Silver Nanoparticles on Dermatophytes

  • Kim, Keuk-Jun (Department of Microbiology, College of Natural Sciences, Kyungpook National University) ;
  • Sung, Woo-Sang (Department of Microbiology, College of Natural Sciences, Kyungpook National University) ;
  • Moon, Seok-Ki (Department of Dermatology, College of Medicine, Yeungnam University) ;
  • Choi, Jong-Soo (Department of Dermatology, College of Medicine, Yeungnam University) ;
  • Kim, Jong-Guk (Department of Microbiology, College of Natural Sciences, Kyungpook National University) ;
  • Lee, Dong-Gun (Department of Microbiology, College of Natural Sciences, Kyungpook National University)
  • Published : 2008.08.31

Abstract

Spherical silver nanoparticles (nano-Ag) were synthesized and their antifungal effects on fungal pathogens of the skin were investigated. Nano-Ag showed potent activity against clinical isolates and ATCC strains of Trichophyton mentagrophytes and Candida species ($IC_{80}$, 1-7${\mu}g/ml$). The activity of nano-Ag was comparable to that of amphotericin B, but superior to that of fluconazole (amphotericin B $IC_{80}$, 1-5${\mu}g/ml$; fluconazole $IC_{80}$, 10-30${\mu}g/ml$). Additionally, we investigated their effects on the dimorphism of Candida albicans. The results showed nano-Ag exerted activity on the mycelia. Thus, the present study indicates nano-Ag may have considerable antifungal activity, deserving further investigation for clinical applications.

Keywords

References

  1. Baker, C., A. Pradhan, L. Pakstis, D. J. Pochan, and S. I. Shah. 2005. Synthesis and antibacterial properties of silver nanoparticles. J. Nanosci. Nanotechnol. 5: 244-249 https://doi.org/10.1166/jnn.2005.034
  2. Boaz, A. and H. G. Marcelo. 1998. Adverse drug reactions of the new oral antifungal agents - terbinafine, fluconazole, and itraconazole. Int. J. Dermatol. 37: 410-415 https://doi.org/10.1046/j.1365-4362.1998.00496.x
  3. Brigger, I., C. Dubernet, and P. Couvreur. 2002. Nanoparticles in cancer therapy and diagnosis. Adv. Drug Deliv. Rev. 54: 631-651 https://doi.org/10.1016/S0169-409X(02)00044-3
  4. Hartsel, S. and J. Bolard. 1996. Amphotericin B: New life for an old drug. Trends Pharmacol. Sci. 17: 445-449 https://doi.org/10.1016/S0165-6147(96)01012-7
  5. Jung, H. J., Y. B. Seu, and D. G. Lee. 2007. Candicidal action of resveratrol isolated from grapes on human pathogenic yeast C. albicans. J. Microbiol. Biotechnol. 17: 1324-1329
  6. Klasen, H. J. 2000. A historical review of the use of silver in the treatment of burns. Π. Renewed interest for silver. Burns 26: 131-138 https://doi.org/10.1016/S0305-4179(99)00116-3
  7. Lee, B. U., S. H. Yun, J.-H. Ji, and G.-N. Bae. 2008. Inactivation of S. epidermidis, B. subtilis, and E. coli bacteria bioaerosols deposited on a filter utilizing airborne silver nanoparticles. J. Microbiol. Biotechnol. 18: 176-182
  8. Mclain, N., R. Ascanio, C. Baker, R. A. Strohaver, and J. W. Dolan. 2000. Undecylenic acid inhibits morphogenesis of Candida albicans. Antimicrob. Agents Chemother. 44: 2873-2875 https://doi.org/10.1128/AAC.44.10.2873-2875.2000
  9. Melaiye, A., Z. Sun, K. Hindi, A. Milsted, D. Ely, D. H. Reneker, C. A. Tessier, and W. J. Youngs. 2005. Silver(I)-imidazole cyclophane gem-diol complexes encapsulated by electrospun tecophilic nanofibers: Formation of nanosilver particles and antimicrobial activity. J. Am. Chem. Soc. 127: 2285-2291 https://doi.org/10.1021/ja040226s
  10. Merisko-Liversidge, E., G. G. Liversidge, and E. R. Cooper. 2003. Nanosizing: A formulation approach for poorly-watersoluble compounds. Eur. J. Pharm. Sci. 18: 113-120 https://doi.org/10.1016/S0928-0987(02)00251-8
  11. Mirmirani, P., N. A. Hessol, T. A. Maurer, T. G. Berger, P. Nguyen, A. Khalsa, et al. 2001. Prevalence and predictors of skin disease in the Women's Interagency HIV Study (WIHS). J. Am. Acad. Dermatol. 44: 785-788 https://doi.org/10.1067/mjd.2001.112350
  12. National Committee for Clinical Laboratory Standards. 1997. Reference method for broth dilution antifungal susceptibility testing of yeasts: Approved standard, document M27-A, NCCLS, Wayne, PA
  13. National Committee for Clinical Laboratory Standards. 1998. Reference method for broth dilution antifungal susceptibility testing of conidium-forming filamentous fungi: Proposed standard, document M-38P, NCCLS, Wayne, PA
  14. Russell, A. D. and W. B. Hugo. 1994. Antimicrobial activity and action of silver. Prog. Med. Chem. 31: 351-370 https://doi.org/10.1016/S0079-6468(08)70024-9
  15. Silver, S. 2003. Bacterial silver resistance: Molecular biology and uses and misuses of silver compounds. FEMS Microbiol. Rev. 27: 341-353 https://doi.org/10.1016/S0168-6445(03)00047-0
  16. Sondi, I. and B. Salopek-Sondi. 2004. Silver nanoparticles as antimicrobial agent: A case study on E. coli as a model for Gram-negative bacteria. J. Colloid Interface Sci. 275: 177-182 https://doi.org/10.1016/j.jcis.2004.02.012
  17. Sung, W. S., H. J. Jung, I. -S. Lee, H. S. Kim, and D. G. Lee. 2006. Antimicrobial effect of furaneol against human pathogenic bacteria and fungi. J. Microbiol. Biotechnol. 16: 349-354
  18. Sung, W. S., I.-S. Lee, and D. G. Lee. 2007. Damage to the cytoplasmic membrane and cell death caused by lycopene in Candida albicans. J. Microbiol. Biotechnol. 17: 1797-1804
  19. Woodfolk, J. A. 2005. Allergy and dermatophytes. Clin. Microbiol. Rev. 18: 30-43 https://doi.org/10.1128/CMR.18.1.30-43.2005