DOI QR코드

DOI QR Code

Physiological and Biochemical Responses to Ozone Toxicity in Five Species of genus Quercus Seedlings

참나무속 5종의 오존 독성에 대한 생리생화학적 반응

  • Kim, Du-Hyun (Divison of Forest Genetic Resources, Korea Forest Research Institute) ;
  • Han, Sim-Hee (Divison of Forest Genetic Resources, Korea Forest Research Institute) ;
  • Ku, Ja-Jung (Divison of Forest Genetic Resources, Korea Forest Research Institute) ;
  • Lee, Kab-Yeon (Divison of Forest Genetic Resources, Korea Forest Research Institute) ;
  • Kim, Pan-Gi (Division of Forest Environment and Resources, Kyungpook National University)
  • 김두현 (국립산림과학원 산림유전자원부) ;
  • 한심희 (국립산림과학원 산림유전자원부) ;
  • 구자정 (국립산림과학원 산림유전자원부) ;
  • 이갑연 (국립산림과학원 산림유전자원부) ;
  • 김판기 (경북대학교 산림환경자원학부)
  • Published : 2008.06.30

Abstract

Physiological and biochemical changes of five species of genus Quercus exposed to ozone fumigation were investigated to assess their tolerance against ozone toxicity. At the end of 150 ppb ozone fumigation, chlorophyll contents, photosynthetic characteristics, malondialdehyde(MDA) and antioxidative enzyme activities were measured in the leaves of five Quercus species(Quercus acutissima, Q. aliena, Q. palustris, Q. serrata, and Q. variabilis). Chlorophyll and carotenoid contents, net photosynthesis and carboxylation efficiency decreased after ozone treatment, indicating that $O_3$-exposed plants underwent physiological inhibition. The reduction rate of total chlorophyll contents and carboxylation efficiency were respectively 15% and 34% for Q. aliena and 38% and 62% for Q. variabilis. The amount of MDA increased with the highest increase rate of 140% in Q. acutissima which also showed the highest increase rate(60%) of superoxide dismutase(SOD). Ascorbate peroxidase(APX) activity increased in Q. variabilis, Q. serrata and Q. acutissima by ozone treatment. Based on our results, ozone tolerance of the five Quercus species was ranked as Q. aliena>Q. palustris>Q. serrata>Q. variabilis>Q. acutissima. We concluded that chlorophyll contents, photosynthesis, MDA content and antioxidative enzymes were the important physiological markers for tolerance against ozone stress, which were closely related with one another.

오존에 노출된 참나무속 5종의 오존에 대한 내성 능력을 평가하기 위하여 생리생화학적 변화를 조사하였다. 150ppb 오존에 노출된 참나무속 5종(상수리나무, 갈참나무, 대왕참나무, 졸참나무, 굴참나무)의 잎에서 엽록소 함량, 광합성 특성, MDA 함량 및 항산화효소 활성이 측정되었다. 엽록소, 카로테노이드 함량, 순광합성 속도 및 탄소고정효율은 오존 처리 후에 감소하였다. 오존에 노출된 수목의 총 엽록소 함량과 탄소고정효율의 감소율은 갈참나무의 경우 15%와 34% 였으며, 굴참나무의 경우 38.3%와 62.1%였다. MDA 함량은 오존 처리 하에서 증가하였으며, 상수리나무에서 140%까지 증가를 보였다. 상수리나무의 SOD 활성 증가율(60%)은 가장 높았으며, APX 활성은 굴참나무, 졸참나무, 상수리나무에서 증가를 보였다. 생리생화학적 반응을 기초로 한 참나무속 5종의 내성 능력은 갈참나무, 대왕참나무, 졸참나무, 굴참나무, 상수리나무 순이었다. 결론적으로 엽록소 함량, 광합성 특성, MDA 함량, 항산화효소와 같은 생리학적 지표들은 오존 스트레스에 대한 내성을 평가하기 위한 매우 중요한 지표들로 생각되며, 이러한 모수들은 서로 밀접한 관계를 가진다.

Keywords

References

  1. Alonso, R., S. Elvira, F. J. Castillo, and B. S. Gimeno, 2001: Interactive effects of ozone and drought stress on pigments and activities of antioxidative enzymes in Pinus halepensis. Plant, Cell & Environment 24, 905-916 https://doi.org/10.1046/j.0016-8025.2001.00738.x
  2. Anderson, P. D., B. Palmer, J. L. J. Houpis, M. K. Smith, and J.C. Pushnik, 2003: Chloroplastic responses of ponderrosa pine (Pinus ponderosa) seedlings to ozone exposure. Environment International 29, 407-413 https://doi.org/10.1016/S0160-4120(02)00177-0
  3. Beauchamp, C. and I. Fridovich, 1971: Superoxide dismutase: Improved assays and an assay applicable to acrylamide gels. Analytical Biochemistry 44, 276-297 https://doi.org/10.1016/0003-2697(71)90370-8
  4. Bielenberg, D. G., J. P. Lynch, and E. J. Pell, 2002: Nitrogen dynamics during $O_3$-dincuded accelerated senescence in hybrid polar. Plant, Cell & Environment 25, 501-512 https://doi.org/10.1046/j.1365-3040.2002.00828.x
  5. Calatayud, A., J. W. Ramirez, H. D. Iglesias, and E. Barreno, 2002: Effects of ozone on photosynthetic $CO_2$ exchange, chlorophyll a fluorescence and antioxidant systems in lettuce leaves. Physiologia Plantarum, 116, 308-316 https://doi.org/10.1034/j.1399-3054.2002.1160305.x
  6. Carlberg, I. and B. Mannervik, 1985: Glutathione reductase. Methods in Enzymology 113, 485-490
  7. Elvira, S., R. Alonso, F. J. Castillo, and B. S. Gimeno, 1998: On the response of pigments and antioxidants of Pinus halepensis seedlings to Mediterranean climatic factors and long-term ozone exposure. New Phytologist 138, 419-432 https://doi.org/10.1046/j.1469-8137.1998.00136.x
  8. Elvira, S, V. Bermejo, E. Manrique, and B. S. Gimeno, 2004: On the response of two populations of Quercus coccifera to ozone and its relationship with ozone uptake. Atmospheric Environment. 38, 2305-2311 https://doi.org/10.1016/j.atmosenv.2003.10.064
  9. Farquhar, G.D., von S. Caemmerer, and J.A. Berry, 1980: A biochemical model of photosynthetic $CO_2$ assimilation in leaves of $C_3$ species. Planta 149, 78-90 https://doi.org/10.1007/BF00386231
  10. Fossati, P., L. Prencipe, and G. Berti, 1980: Use of 3,5-dichloro-2-hydroxy benzenesulfonic acid /4-aminophenazone chromogenic system in direct enzyme assay of uric acid in serum and urine. The Clinical Chemistry Methodology 26, 227-231
  11. Felzer, B. S., T. Cronin, J. M., Reilly, J. M. Melillo, and X. Wang, 2007: Impacts of ozone on trees and crops. Comptes Rendus Geoscience 339, 784-798 https://doi.org/10.1016/j.crte.2007.08.008
  12. Fuhrer, J. and B. Achermann, 1994: Critical levels for ozone; AUN-ECE Workshop report. FAC Report No. 16 Swiss federal research station for Agricultural Chemistry and Environmental Hygience, Liebefeld-Bern
  13. Han, S. H., D. H., Kim, K. Y. Lee, J .J. Ku, and P. G. Kim, 2007: Physiological damages and biochemical alleviation to ozone toxicity in five species of genus Acer. Journal of Korean Forest Society 96, 551-560
  14. Han, S. H., J. C. Lee, W. Y. Lee, Y. Park, and C. Y. Oh, 2006: Antioxidant characteristics and phytoremediation potential of 27 texa of roadside trees at industrial complex area. Korean Horticultural of Agricultural and Forest Meteorology 8, 159-168
  15. Hanson, P. J., S. D. Wullschleger, R. J. Norby, T. J. Tschaplinski, and C. A. Gunderson, 2005: Importance of changing $CO_2$, temperature, precipitation, and ozone on carbon and water cycles of an upland-oak forest: incorporating experimental results into model simulations. Global Change Biology 11, 1402-1423 https://doi.org/10.1111/j.1365-2486.2005.00991.x
  16. Hanson, P. J., L. J. Samuelson, and S. D. Wullschleger, 1994: Seasonal patterns of light-saturated photosynthesis and leaf conductance for mature and seedling Quercus rubra L. Foliage: differential sensitivity to ozone. Tree Physiology 14, 1351-1366 https://doi.org/10.1093/treephys/14.12.1351
  17. Heath, R. L. and L. Parker, 1968: Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Archives of Biochemistry and Biophysics 125, 189-198 https://doi.org/10.1016/0003-9861(68)90654-1
  18. Iglesias, D. J., A. Calatayud, Barreno, E. Primi-Millo, and M. Talon, 2006. Responses of citrus plants to ozone: leaf biochemistry, antioxidant mechanisms and lipid peroxidation. Plant Physiology and Biochemistry 44, 125-131 https://doi.org/10.1016/j.plaphy.2006.03.007
  19. Inclan, R., A. Ribas, M. Pujadas, J. Teres, and B. S. Gimeno, 1999: The relative sensitivity of different Mediterranean plant species to ozone exposure. Water, Air, and Soil Pollution 116, 273-277 https://doi.org/10.1023/A:1005214005416
  20. Karnosky, D. F., J. M. Skelly, K. E. Percy, and A. H. Chappelka, 2007: Perspectives regarding 50 years of research on effects of tropospheric ozone air pollution on US forests. Environmental Pollution 147, 489-506 https://doi.org/10.1016/j.envpol.2006.08.043
  21. Kelting, D. L., J. A. Burger, and G. S. Edwards, 1995: The effects of ozone on the root dynamics of seedlings and mature red oak (Quercus rubra L.). Forest Ecology and Management 769, 197-206
  22. Kim, P. G., and E. J. Lee, 2001: Ecophysiology of photosynthesis 1: Effects of light intensity and intercellular $CO_2$ pressure on photosynthesis. Korean Journal of Agricultural and Forest Meteorology 3, 126-133
  23. Knudson, L. L., T. W. Tibbitts, and G. E., Edwards, 1977: Measurement of ozone injury by determination of leaf chlorophyll concentration. Plant Physiology 60, 606-608 https://doi.org/10.1104/pp.60.4.606
  24. Kubo, A., H., Saji, K. Tanaka, and N. Kondo, 1995: Expression of Arabidopsis cytosolic ascorbate peroxidase gene in response to ozone or sulfur dioxide. Plant Molecular Biology 29, 479-489 https://doi.org/10.1007/BF00020979
  25. Long, S. P., and S. P. Naidu, 2002: Effects of oxidants at the biochemical, cell and physiological levels, with particular reference to ozone. Air pollution and plant Life, J. N. B. Bell, and M. Treshow (Eds.), Wiley, London, 69-88
  26. Lichtenthaler, H. K., 1987: Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods in Enzymology 148, 350-382 https://doi.org/10.1016/0076-6879(87)48036-1
  27. Lee, J. C., S. H. Han, P. G. Kim, S. S. Jang, and S. Y. Woo, 2003: Growth, physiological responses and ozone uptake of five Betula species exposed to ozone. Korean Journal of Ecology 26, 165-172 https://doi.org/10.5141/JEFB.2003.26.4.165
  28. Mills, G., G. Ball, F. Hayes, J. Fuhrer, L., Skarby, L., B. Gimeno. L. De Temmerman, and A. Heagle, 2000: Development of a multi-factor model for predicting the effects of ambient ozone on the biomass of white clove. Environmental Pollution 109, 533-542 https://doi.org/10.1016/S0269-7491(00)00057-9
  29. Ministry of Environment, 2005: Annual report of air quality in Korea 2004, 145pp.
  30. Minnocci, A., A. Pannicucci, L. Sebastiani, G. Lorenzini, and C. Vitagliano, 1999: Physiological and morphological responses of olive plants to ozone exposure during a growing season. Tree Physiology 19, 391-397 https://doi.org/10.1093/treephys/19.6.391
  31. Muller-Edzards, C., W. De Nries, and J. W. Erisman, 1997: Ten years of monitoring forest condition in Europe. UN/ECE-EC Technical Background Report. Brussels, Geneva: EC-UN/ECE
  32. Nakano, Y., and K. Asada, 1981: Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiology 22, 867-880
  33. Paakkonen, E., J. Vahala, M. Pohjola, T. Holopainen, and L. Karenlampi, 1998: Physiological, stomatal and ultrastructural ozone responses in birch (Betula pendula Roth) are modified by water stress, Plant, Cell & Environment 21, 671-684 https://doi.org/10.1046/j.1365-3040.1998.00303.x
  34. Paoletti, E., C. Nali, R. Marabottini, G. Della Rocca, G. Lorenzini, A. R. Paolacci, M. Ciaffi, and M. Badiani, 2003: Strategies of response to ozone in Mediterranean evergreen species. Establishing Ozone Critical Levels II. UNECE Workshop Report. IVL report B 1523, IVL Swedish Environmental Research Institute, Goteborg, Sweden, 336-343
  35. Paoletti, E., G. Seufert, G. Della Rocca, and H. Thomsen, 2007: Photosynthetic responses to elevated $CO_2$ and $O_3$ in Quercus ilex leaves at a natural $CO_2$ spring. Environmental Pollution 147, 516-524 https://doi.org/10.1016/j.envpol.2006.08.039
  36. Prince, A., P. W. Lucas, and P. J. Lea, 1990: Age dependent damage and glutathione metabolism in ozone fumigated barley: a leaf section approach. Journal of Experimental Botany 41, 1309-1317 https://doi.org/10.1093/jxb/41.10.1309
  37. Puckette, M. C., H. Weng, and R. Mahalingam, 2007: Physiological and biochemical responses to acute ozoneinduced oxidative stress in Medicago truncatula. Plant Physiology and Biochemistry 45, 70-79 https://doi.org/10.1016/j.plaphy.2006.12.004
  38. Ranieri, A., G. D'Urso, C., Nali, G. Lorenzini, and G. F. Soldatini, 1996: Ozone stimulates apoplastic antioxidant systems in pumpkin leaves. Physiologia Plantarum 97, 381-387 https://doi.org/10.1034/j.1399-3054.1996.970224.x
  39. Ranieri, A., G. Ginuntini, F. Ferraro, C., Nali, B., Baldan, G. Lorensini, and G.R. Soldatini, 2001: Chronic ozone fumigation induces alterations in thylakoid functionality and composition in two poplar clones. Plant Physiology and Biochemistry 39, 999-1008 https://doi.org/10.1016/S0981-9428(01)01320-1
  40. Ragazzi, A., S. Moricca, and I. Dellavalle, 1998: Status of oak decline studies in Italy and some view of the European situation. Proceedings of Workshop on Disease/Environment Interactions in Forest Decline, Vienna, Austria, 202
  41. Rao, M. V., C. Paliyath, and D. P. Ormrod, 1996: Ultraviolet-B and ozone-induced biochemical changes in antioxidant enzymes of Arabidopsis thaliana. Plant Physiology 110, 125-136 https://doi.org/10.1104/pp.110.1.125
  42. Ribas, A., J. Peñuelas, S. Elvira, and B. S. Gimeno, 2005: Ozone exposure induces the activation of leaf senescence-related processes and morphological and growth changes in seedlings of Mediterranean tree species. Environmental Pollution 134, 291-300 https://doi.org/10.1016/j.envpol.2004.07.026
  43. Sakaki, T., N. Kondo, and K. Sugahara, 1983: Breakdown of photosynthetic pigments and lipids in spinach leaves with ozone fumigation: role of active oxygens. Physiologia Plantarum 59, 28-34 https://doi.org/10.1111/j.1399-3054.1983.tb06566.x
  44. Samuelson, L. J., J. M. Kelly, and P. A. Mays, 1996: Growth and nutrition of Quercus rubra L. seedlings and mature trees after three seasons of ozone exposure. Environmental Pollution 91, 317-323 https://doi.org/10.1016/0269-7491(95)00067-4
  45. Sharma, Y. K. and K. R. Davis, 1997: The effects of ozone on antioxidant responses in plants. Free Radical Biology & Medicine 23, 480-488 https://doi.org/10.1016/S0891-5849(97)00108-1
  46. Skarby, L., H. Ro-Poulsen, F. A. M. Wellburn, and L. J. Sheppard, 1998: Impacts of ozone on forests: a European perspective. New Phytologist 139, 109-122 https://doi.org/10.1046/j.1469-8137.1998.00184.x
  47. Sousa Santos, M. N. D, and A. M. Moura Martins, 1993: Cork oak decline. Notes regarding damage and incidence of Hypexylon mediterraneum. Recent advances in Studies on Oak Decline. N.P. Luisi, A. Lerario, and B. Nannini (Eds), Italy: Universita degli Studi, Dipartmento di by Patologia vegetale, 115-121
  48. Tauz, M., K. Herbinger, S. Posch, and N. E. Grulke, 2002: Antioxidant status of Pinus jeffreyi needles from mesic and xeric microsites in early and late summer. Phyton-Annales Rei Botanicae 42, 201-207
  49. Thomas, F. M., R. Blank, and G. Hartmann, 2002: Abiotic and biotic factors and their interactions as causes of oak decline in Central Europe. Forest Pathology 32, 277-307 https://doi.org/10.1046/j.1439-0329.2002.00291.x
  50. Vitale, M., E. Calvatori, F. Voreto, S. Fares, and F. Manes, 2008: Physiological responses of Quercus ilex leaves to water stress and acute ozone exposure under controlled conditions. Water, Air, and Soil Pollution 189, 113-125 https://doi.org/10.1007/s11270-007-9560-4
  51. Weinstein, A., L. J. Samuelson, and M. A. Arthur, 1998: Comparison of the response of red oak (Quercus rubra) seedlings and mature trees to ozone exposure using simulation modeling. Environmental Pollution 102, 307-320 https://doi.org/10.1016/S0269-7491(98)00049-9
  52. Wullschleger, S. D., P. J. Hanson, and G. S. Edwards, 1996: Growth and maintenance respiration in leaves of northern red oak seedlings and mature trees after three years of ozone exposure. Plant Cell and Environment 19, 577-584 https://doi.org/10.1111/j.1365-3040.1996.tb00391.x
  53. Yoshida, M., Y. Nouchi, and S. Toyama, 1994: Studies on the role of active oxygen in ozone in injury to plant cells. I. Generation of active oxygen in rice protoplast exposed to ozone. Plant Science 95, 197-205 https://doi.org/10.1016/0168-9452(94)90093-0
  54. Zheng, Y., H. Shimizu, and J. D. Barnes, 2002: Limitations to $CO_2$ assimilation in ozone-exposed leaves of Plantago major. New Phytologist 155, 67-78 https://doi.org/10.1046/j.1469-8137.2002.00446.x

Cited by

  1. Changes on Initial Growth and Physiological Characteristics of Larix kaempferi and Betula costata Seedlings under Elevated Temperature vol.14, pp.2, 2012, https://doi.org/10.5532/KJAFM.2012.14.2.063
  2. Changes on Growth, Photosynthesis and Pigment contents of the Maackia amurensis and Viburnum opulus var. calvescens under Enhanced Temperature and CO2Concentration vol.13, pp.3, 2011, https://doi.org/10.5532/KJAFM.2011.13.3.115