Overexpression, Purification, and Preliminary X-ray Crystallographic Analysis of Human Brain-Type Creatine Kinase

  • Bong, Seung-Min (Division of Biotechnology, College of Life Sciences, Korea University) ;
  • Moon, Jin-Ho (Division of Biotechnology, College of Life Sciences, Korea University) ;
  • Jang, Eun-Hyuk (Division of Biotechnology, College of Life Sciences, Korea University) ;
  • Lee, Ki-Seog (Division of Biotechnology, College of Life Sciences, Korea University) ;
  • Chi, Young-Min (Division of Biotechnology, College of Life Sciences, Korea University)
  • Published : 2008.02.29

Abstract

Creatine kinase (CK; E.C. 2.7.3.2) is an important enzyme that catalyzes the reversible transfer of a phosphoryl group from ATP to creatine in energy homeostasis. The brain-type cytosolic isoform of creatine kinase (BB-CK), which is found mainly in the brain and retina, is a key enzyme in brain energy metabolism, because high-energy phosphates are transfered through the creatine kinase/phosphocreatine shuttle system. The recombinant human BB-CK protein was overexpressed as a soluble form in Escherichia coli and crystallized at $22^{\circ}C$ using PEG 4000 as a precipitant. Native X-ray diffraction data were collected to $2.2{\AA}$ resolution using synchrotron radiation. The crystals belonged to the tetragonal space group $P4_32_12$, with cell parameters of a=b=97.963, $c=164.312{\AA},\;and\;{\alpha}={\beta}={\gamma}=90^{\circ}$. The asymmetric unit contained two molecules of CK, giving a crystal volume per protein mass $(V_m)$ of $1.80{\AA}^3\;Da^{-1}$ and a solvent content of 31.6%.

Keywords

References

  1. Abraham, M. R., V. A. Selivanov, D. M. Hodgson, D. Pucar, L. V. Zingman, B. Wieringa, P. P. Dzeja, A. E. Alekseev, and A. Terzic. 2002. Coupling of cell energetics with membrane metabolic sensing. Integrative signaling through creatine kinase phosphotransfer disrupted by M-CK gene knock-out. J. Biol. Chem. 277: 24427-24434 https://doi.org/10.1074/jbc.M201777200
  2. Aksenov, M. Y., M. V. Aksenova, R. M. Payne, C. D. Smith, W. R. Markesbery, and J. M. Carney. 1997. The expression of creatine kinase isoenzymes in neocortex of patients with neurodegenerative disorders: Alzheimer's and Pick's disease. Exp. Neurol. 146: 458-465 https://doi.org/10.1006/exnr.1997.6550
  3. Crawford, R. M., H. J. Ranki, C. H. Botting, G. R. Budas, and A. Jovanovic. 2002. Creatine kinase is physically associated with the cardiac ATP-sensitive K+ channel in vivo. FASEB J. 16: 102-104 https://doi.org/10.1096/fj.01-0466fje
  4. David, S., M. Shoemaker, and B. E. Haley. 1998. Abnormal properties of creatine kinase in Alzheimer's disease brain: Correlation of reduced enzyme activity and active site photolabeling with aberrant cytosol-membrane partitioning. Mol. Brain Res. 54: 276-287 https://doi.org/10.1016/S0169-328X(97)00343-4
  5. Eder, M., K. Fritz-Wolf, W. Kabsch, T. Wallimann, and U. Schlattner. 2000. Crystal structure of human ubiquitous mitochondrial creatine kinase. Proteins 39: 216-225 https://doi.org/10.1002/(SICI)1097-0134(20000515)39:3<216::AID-PROT40>3.0.CO;2-#
  6. Eder, M., U. Schlatter, A. Becker, T. Wallimann, W. Kabsch, and K. Fritz-Wolf. 1999. Crystal structure of brain-type creatine kinase at 1.41 $\AA$ resolution. Protein Sci. 8: 2258-2269 https://doi.org/10.1110/ps.8.11.2258
  7. Fritz-Wolf, K., T. Schnyder, T. Wallimann, and W. Kabsch. 1996. Structure of mitochondrial creatine kinase. Nature 381: 341-345 https://doi.org/10.1038/381341a0
  8. Grosse, R., E. Spitzer, V. V. Kupriyanov, V. A. Saks, and K. R. Repke. 1980. Coordinate interplay between (Na+ + K+)- ATPase and creatine phosphokinase optimizes (Na+/K+)-antiport across the membrane of vesicles formed from the plasma membrane of cardiac muscle cell. Biochim. Biophys. Acta 603: 142-156 https://doi.org/10.1016/0005-2736(80)90397-1
  9. Guerrero, M. L., J. Beron, B. Spindler, P. Groscurth, T. Wallimann, and F. Verrey. 1997. Metabolic support of Na+ pump in apically permeabilized A6 kidney cell epithelia: Role of creatine kinase. Am. J. Physiol. 272: C697-C706 https://doi.org/10.1152/ajpcell.1997.272.2.C697
  10. Kaldis, P., W. Hemmer, E. Zanolla, D. Holtzman, and T. Wallimann. 1996. Hot spots of creatine kinase localization in brain: Cerebellum, hippocampus and choroid plexus. Dev. Neurosci. 18: 542-554 https://doi.org/10.1159/000111452
  11. Lahiri, S. D., P. F. Wang, P. C. Babbitt, M. J. McLeish, G. L. Kenyon, and K. N. Allen. 2002. The 2.1 $\AA$ structure of Torpedo californica creatine kinase complexed with the $ADP-Mg^{2+}-NO^{3-}-creatine$ transition-state analogue complex. Biochemistry 41: 13861-13867 https://doi.org/10.1021/bi026655p
  12. Matthews, B. W. 1968. Solvent content of protein crystals. J. Mol. Biol. 33: 491-497 https://doi.org/10.1016/0022-2836(68)90205-2
  13. McCoy, A. J., R. W. Grosse-Kunstleve, L. C. Storoni, and R. J. Read. 2005. Likelihood-enhanced fast translation functions. Acta Crystallogr. D 61: 458-464
  14. Mcleish, M. J. and G. L. Kenyon. 2005. Relating structure to mechanism in creatine kinase. Biochem. Mol. Biol. 40: 1-20 https://doi.org/10.1080/10409230590918577
  15. Ohren, J. F., M .L. Kundracik, C. L. Borders, P. Edmistonb, and E. R. Viola. 2007. Structural asymmetry and intersubunit communication in muscle creatine kinase. Acta Crystallogr. D 63: 381-389
  16. Pruett, P. S., A. Azzi, S. A. Clark, M. S. Yousef, J. L. Gattis, T. Somasundaram, W. R. Ellington, and M. S. Chapman. 2003.The putative catalytic bases have, at most, an accessory role in the mechanism of arginine kinase. J. Biol. Chem. 278: 26952-26957 https://doi.org/10.1074/jbc.M212931200
  17. Rao, J. K., G. Bujacz, and A. Wlodawer. 1998. Crystal structure of rabbit muscle creatine kinase. FEBS Lett. 439: 133-137 https://doi.org/10.1016/S0014-5793(98)01355-6
  18. Shen, Y. Q., L. Tang, H. M. Zhou, and Z. J. Lin. 2001. Structure of human muscle creatine kinase. Acta Crystallogr. D 57: 1196-1200 https://doi.org/10.1107/S0907444901007703
  19. Tisi, D., B. Bax, and A. Loew. 2000. The three-dimensional structure of cytosolic bovine retinal creatine kinase. Acta Crystallogr. D 57: 187-193
  20. Walliman, T. and W. Hemmer. 1994. Creatine kinase in nonmuscle tissues and cells. Mol. Cell. Biochem. 133-134: 193-220 https://doi.org/10.1007/BF01267955