Expression and Purification of Intact and Functional Soybean (Glycine max) Seed Ferritin Complex in Escherichia coli

  • Dong, Xiangbai (The State Key Laboratory of Pharmaceutical Biotechnology and Department of Biochemistry, College of Life Sciences, Nanjing University) ;
  • Tang, Bo (The State Key Laboratory of Pharmaceutical Biotechnology and Department of Biochemistry, College of Life Sciences, Nanjing University) ;
  • Li, Jie (The State Key Laboratory of Pharmaceutical Biotechnology and Department of Biochemistry, College of Life Sciences, Nanjing University) ;
  • Xu, Qian (The State Key Laboratory of Pharmaceutical Biotechnology and Department of Biochemistry, College of Life Sciences, Nanjing University) ;
  • Fang, Shentong (The State Key Laboratory of Pharmaceutical Biotechnology and Department of Biochemistry, College of Life Sciences, Nanjing University) ;
  • Hua, Zichun (The State Key Laboratory of Pharmaceutical Biotechnology and Department of Biochemistry, College of Life Sciences, Nanjing University)
  • Published : 2008.02.29

Abstract

Soybean seed ferritin is essential for human iron supplementation and iron deficiency anemia prevention because it contains abundant bioavailable iron and is frequently consumed in the human diet. However, it is poorly understood in regards its several properties, such as iron mineralization, subunit assembly, and protein folding. To address these issues, we decided to prepare the soybean seed ferritin complex via a recombinant DNA approach. In this paper, we report a rapid and simple Escherichia coli expression system to produce the soybean seed ferritin complex. In this system, two subunits of soybean seed ferritin, H-2 and H-1, were encoded in a single plasmid, and optimal expression was achieved by additionally coexpressing a team of molecular chaperones, trigger factor and GroEL-GroES. The His-tagged ferritin complex was purified by $Ni^{2+}$ affinity chromatography, and an intact ferritin complex was obtained following His-tagged enterokinase (His-EK) digestion. The purified ferritin complex synthesized in E. coli demonstrated some reported features of its native counterpart from soybean seed, including an apparent molecular weight, multimeric assembly, and iron uptake activity. We believe that the strategy described in this paper may be of general utility in producing other recombinant plant ferritins built up from two types of subunits.

Keywords

References

  1. Arosio, P. and S. Levi. 2002. Ferritin, iron homeostasis, and oxidative damage. Free Radic. Biol. Med. 33: 457-463 https://doi.org/10.1016/S0891-5849(02)00842-0
  2. Arosio, P., T. G. Adelman, and J. W. Drysdale. 1978. On ferritin heterogeneity. Further evidence for heteropolymers. J. Biol. Chem. 253: 4451-4458
  3. Chasteen, N. D. and E. C. Theil. 1982. Iron binding by horse spleen apoferritin. A vanadyl (IV) EPR spin probe study. J. Biol. Chem. 257: 7672-7677
  4. Clerte, S., A. Dautant, D. B. Langlois, B. Gallois, Y. Mizunoe, S. N. Wai, and G. Precigoux. 1999. Expression, purification, crystallization and preliminary X-ray diffraction results from Campylobacter jejuni ferritin. Acta Crystallogr. D Biol. Crystallogr. 55: 299-301 https://doi.org/10.1107/S090744499801004X
  5. Davila-Hicks, P., E. C. Theil, and B. Lonnerdal. 2004. Iron in ferritin or in salts (ferrous sulfate) is equally bioavailable in nonanemic women. Am. J. Clin. Nutr. 80: 936-940 https://doi.org/10.1093/ajcn/80.4.936
  6. Fang, L., Q. M. Sun, and Z. C. Hua. 2004. Expression of recombinant Chinese bovine enterokinase catalytic subunit in P. pastoris and its purification and characterization. Acta Biochim. Biophys. Sin. 36: 513-517 https://doi.org/10.1093/abbs/36.7.513
  7. Harrison, P. M. and P. Arosio. 1996. The ferritins: Molecular properties, iron storage function and cellular regulation. Biochim. Biophys. Acta 1275: 161-203 https://doi.org/10.1016/0005-2728(96)00022-9
  8. Horwich, A. L., G. W. Farr, and W. A. Fenton. 2006. GroELGroES- mediated protein folding. Chem. Rev. 106: 1917-1930 https://doi.org/10.1021/cr040435v
  9. Hudson, A. J., S. C. Andrews, C. Hawkins, J. M. Williams, M. Izuhara, F. C. Meldrum, S. Mann, P. M. Harrison, and J. R. Guest. 1993. Overproduction, purification and characterization of the Escherichia coli ferritin. Eur. J. Biochem. 218: 985-995 https://doi.org/10.1111/j.1432-1033.1993.tb18457.x
  10. Karimi, M., R. Kadivar, and H. Yarmohammadi. 2002. Assessment of the prevalence of iron deficiency anemia, by serum ferritin, in pregnant women of Southern Iran. Med. Sci. Monit. 8: CR488-CR492
  11. Laulhere, J. P., A. M. Lescure, and J. F. Briat. 1988. Purification and characterization of ferritins from maize, pea, and soya bean seeds. J. Biol. Chem. 263: 10289-10294
  12. Lawson, D. M., A. Treffry, P. J. Artymiuk, P. M. Harrison, S. J. Yewdall, A. Luzzago, G. Cesareni, S. Levi, and P. Arosio. 1989. Identification of the ferroxidase centre in ferritin. FEBS Lett. 254: 207-210 https://doi.org/10.1016/0014-5793(89)81040-3
  13. Lawson, D. M., P. J. Artymiuk, S. J. Yewdall, J. M. Smith, J. C. Livingstone, A. Treffry, A. Luzzago, S. Levi, P. Arosio, and G. Cesareni. 1991. Solving the structure of human H ferritin by genetically engineering intermolecular crystal contacts. Nature 349: 541-544 https://doi.org/10.1038/349541a0
  14. Levi, S., J. Salfeld, F. Franceschinelli, A. Cozzi, M. H. Dorner, and P. Arosio. 1989. Expression and structural and functional properties of human ferritin L-chain from Escherichia coli. Biochemistry 28: 5179-5184 https://doi.org/10.1021/bi00438a040
  15. Levi, S., S. J. Yewdall, P. M. Harrison, P. Santambrogio, A. Cozzi, E. Rovida, A. Albertini, and P. Arosio. 1992. Evidence of H- and L-chains have co-operative roles in the iron-uptake mechanism of human ferritin. Biochem. J. 288(Pt 2): 591-596 https://doi.org/10.1042/bj2880591
  16. Liu, X. and E. C. Theil. 2005. Ferritins: Dynamic management of biological iron and oxygen chemistry. Acc. Chem. Res. 38: 167-175 https://doi.org/10.1021/ar0302336
  17. Lobreaux, S., S. J. Yewdall, J. F. Briat, and P. M. Harrison. 1992. Amino-acid sequence and predicted three-dimensional structure of pea seed (Pisum sativum) ferritin. Biochem. J. 288(Pt 3): 931-939
  18. Masuda, T., B. Mikami, F. Goto, T. Yoshihara, and S. Utsumi. 2003. Crystallization and preliminary X-ray crystallographic analysis of plant ferritin from Glycine max. Biochim. Biophys. Acta 1645: 113-115 https://doi.org/10.1016/S1570-9639(02)00523-X
  19. Masuda, T., F. Goto, and T. Yoshihara. 2001. A novel plant ferritin subunit from soybean that is related to a mechanism in iron release. J. Biol. Chem. 276: 19575-19579 https://doi.org/10.1074/jbc.M011399200
  20. Nishihara, K., M. Kanemori, H. Yanagi, and T. Yura. 2000. Overexpression of trigger factor prevents aggregation of recombinant proteins in Escherichia coli. Appl. Environ. Microbiol. 66: 884-889 https://doi.org/10.1128/AEM.66.3.884-889.2000
  21. Ragland, M., J. F. Briat, J. Gagnon, J. P. Laulhere, O. Massenet, and E. C. Theil. 1990. Evidence for conservation of ferritin sequences among plants and animals and for a transit peptide in soybean. J. Biol. Chem. 265: 18339-18344
  22. Ro, H. S., H. K. Park, M. G. Kim, and B. H. Chung. 2005. In vitro formation of protein nanoparticle using recombinant human ferritin H and L chains produced from E. coli. J. Microbiol. Biotechnol. 15: 254-258
  23. Rucker, P., F. M. Torti, and S. V. Torti. 1997. Recombinant ferritin: Modulation of subunit stoichiometry in bacterial expression systems. Protein Eng. 10: 967-973 https://doi.org/10.1093/protein/10.8.967
  24. Sczekan, S. R. and J. G. Joshi. 1987. Isolation and characterization of ferritin from soyabeans (Glycine max). J. Biol. Chem. 262:13780-13788
  25. Theil, E. C. 1987. Ferritin: Structure, gene regulation, and cellular function in animals, plants, and microorganisms. Annu. Rev. Biochem. 56: 289-315 https://doi.org/10.1146/annurev.bi.56.070187.001445
  26. Theil, E. C. 2003. Ferritin: At the crossroads of iron and oxygen metabolism. J. Nutr. 133: 1549S-1553S https://doi.org/10.1093/jn/133.5.1549S
  27. Zhao, J. H., Z. Xu, and Z. C. Hua. 2000. Expression of human cardiac-specific homeobox protein in Escherichia coli. Protein Expr. Purif. 18: 316-319 https://doi.org/10.1006/prep.2000.1198