DOI QR코드

DOI QR Code

Basic Research on Revetments Development of Erosion Protection for Coastline Creation of Hydrophilic Environment by Field Observation

현장관측에 의한 친환경 해안조성을 위한 침식방지 호안공 개발에 관한 기초적 연구

  • Published : 2008.10.29

Abstract

In recent times, sea level increasing caused by abnormal weather and global warming, sea-sand dredging and complex development causes various kind of erosion damages onto the coastal area in the world. The various types of erosion control and protection methods are applied but there are no signs of fruitful effectiveness. The PC concrete protection block for shore protection structure is practically installed in globally but most of structures in the present day became villainous because of bad accessability. In this study, hydrophilic revetments for control and protection of coastline erosion will be developed in order to make up for a faculty of the shore erosion protection block with better accessibility and excellent protection ability. Experimental measurements were researched to insure for the capacity and facility on reflection coefficient, overtopping volume, and overtopping height characteristics of newly developed shore erosion protection block in model tests. As the result, hydraulic model tests show much excellent than the general step block. Field tests were carried out also to verify through vegetative test on an affinity and construction work test of control-protection on coastline erosion with actual utilization. In the latter case, deposition of sand accumulation occurred in fairly short time at the established reaches and then we can be confirmed to utilize for newly developed block as the revetments for control and protection of coastline erosion.

근래에 이상기상과 지구 온난화로 인한 해수면 상승과 해사채취, 난개발에 의해 국내외 연안역에 여러 형태의 침식피해가 발생되고 있다. 이에 대한 침식방지 및 보호대책 공법이 적용되고 있으나 큰 실효를 거두지 못하고 있다. 연안보호 구조물로 PC 콘크리트 호안블럭이 국내외 연안에 시공되고 있으나 대부분의 기존 구조물들은 사람의 접근성이 어려운 구조물로 시공되어 있어 친수성이 부족한 실정이다. 본 연구에서는 이런 점들을 보완하여 사람들의 접근성이 좋으면서 연안침식 방지 보호 능력이 우수한 친수성 호안공을 개발하고자 한다. 개발한 호안공의 성능과 기능의 확보를 위해 모형실험이 반사율, 파량, 월파고에 대해 수행되었다. 그 결과는 일반 계단형 보다 훨씬 좋은 결과를 나타냈다. 또한 호안공의 실용화를 위해 현장실험은 노출부 일단면의 식생실험과 해안역의 침식구간에 시공실험을 실시하였다. 후자의 경우는 실험구간에서 많은 양의 모래가 짧은 시간에 퇴적되어 연안침식 방지 및 보호용 친수 호안공으로서의 현장 적용성을 확인하였다.

Keywords

References

  1. 권혁민, 이달수 (1999). “신형 중간피복 블럭의 개발.” 대한토목학회 논문집, 대한토목학회, 제19권, 제2-2호, pp. 183-194
  2. 김남형, 문지원 (2007). “인공리프에 의한 해빈의 침식해석.” 대한토목학회 논문집, 대한토목학회, 제27권, 제4B호, pp. 455-460
  3. 김규한, 유형석 (2003). “현장관측에 의한 침식해안의 표사이동분석.” 대한토목학회 논문집, 대한토목학회, 제23권, 제2B호, pp. 115-121
  4. 김인철, 위현철 (2003). “송도해수욕장의 해안침식방지 대책 공법에 관한 수치적 연구.” 대한토목학회 정기학술대회 발표논문, 대한토목학회, pp. 4982-4987
  5. 김호용, 최철웅 (2005). “광안리 지역의 장기 지형변화에 관한 연구.” 대한토목학회 논문집, 대한토목학회, 제25권, 제1-D호, pp. 203-211
  6. 류택규, 이대호 (2001). “해안침식 방지 공법 연구.” 생명자원과학연구, 제26집, pp. 92-97
  7. 박상길, 강경욱 (2001). “3차원 수리실험에 의한 트렌치 배후의 해빈안정에 관한 연구.” 대한토목학회 논문집, 대한토목학회, 제2권, 제6-B호, pp. 656-666
  8. 신은철, 오영인 (2003). “수리모형 실험을 통한 지오텍스타일 튜브의 특성분석.” 대한토목학회 논문집, 대한토목학회, 제23권, 제1C호, pp. 23-33
  9. 이종석, 한재명 (2007). “자연친화형 해안침식방지 구조물의 안정성.” 한국콘텐츠학회 논문지, 한국콘텐츠학회, 제7권, 제9호, pp. 212-219
  10. 장용채, 이승은 (2005). “토목섬유 Two-bag을 이용한 연안침식 방지기술 개발.” 한국산학연논문집, 한국산학연, 제5권, 제4호, pp. 37-43
  11. 차영기, 이종석, 이대철, 김진규, 맹봉재, 김이현 (2003). 항만공학, 도서출판 새론, pp. 137-151
  12. 한재명 (2008). “연안침식 방지를 위한 친수호안 블럭의 개발.” 석사학위논문, 한밭대학교
  13. 한재명, 김영민, 박만교, 이종석 (2006). “자연친화형 소파블럭의 개발.” 대한토목학회 정기학술대회 발표 논문집, 대한토목학회, pp. 245-248
  14. 한재명, 신재옥, 이종석 (2005). “환경친화형 해안보호 호안블럭에 관한 연구.” 대한토목학회 정기학술대회 발표 논문집, 대한토목학회, pp. 215-218
  15. 해양수산부 (2005a). 연안침식방지기술 연구 용역보고서
  16. 해양수산부 (2005b). 항만 및 어항 설계기준(상.하권)
  17. 허동수, 이우동 (2007). “투수층 매설에 의한 해빈안정화에 관한 고찰.” 대한토목학회 정기학술대회 논문집, 대한토목학회, pp. 626-629
  18. (주)한길 (2005). 환경친화형 친수호안블럭 수리모형 실험결과 보고서, 한국해양연구원
  19. 宇多高明 (2004). 海岸侵食の實態と解決策, pp. 27-32
  20. Balas, C.E., and Ergin, A. (2002). “Reliability-Based Risk Assessment in Coastal Projets: Case Study in Turkey.” J. Wtrwy. Port Coast. and Ocn. Engrg., ASCE, Vol. 128, No. 2, pp. 52-61 https://doi.org/10.1061/(ASCE)0733-950X(2002)128:2(52)
  21. Bretschneider, C.L. (1968). “Significant Wave and Wave Spectrum.” Ocean Industry, Feb., pp. 40-46
  22. Chin, C.O., and Chiew, Y.M. (1993). “Effect of Bed Surface Structure on Spherical Particles Stability.” J. Wtrwy. Port Coast. and Ocn. Engrg., ASCE, Vol. 119, No. 3, pp. 231-242 https://doi.org/10.1061/(ASCE)0733-950X(1993)119:3(231)
  23. Ding, Y., Wang, S.S.Y., and Jia, Y. (2006). “Development and Validation of a Quasi-Three-Dimensional Coastal Area Morphological Model." J. Wtrwy. Port Coast. and Ocn. Engrg., ASCE, Vol. 132, No. 6, pp. 462-476 https://doi.org/10.1061/(ASCE)0733-950X(2006)132:6(462)
  24. Duclos, G., Josset, C., Clėment, H.A., Gentaz, L., and Colmard, C. (2004). "Hydrodynamic Efficiency of a New Design of Half-Submerged Breakwater Compared to a Rectangular Caisson." J. Wtrwy. Port Coast. and Ocn. Engrg., ASCE, Vol. 130, No. 3, pp. 127-133 https://doi.org/10.1061/(ASCE)0733-950X(2004)130:3(127)
  25. Headland, J.R., Alfageme, S.R., Smith, E., and Kotulak, P. (2007). "Coastal Stucture Design for Shore Protection and Sand Retention: Practical Aspects." Coastal Sediments 2007, Conference Proceeding, pp. 2432-2445
  26. Horikawa, K. (1978). Coastal Engineering An Introduction to Ocean Engineering, Univ. of Tokyo Press
  27. John, B.H. (2000). Handbook of Coastal Engineering. McGraw-Hill
  28. Michael, E.M. (1972). Ocean Engineering Wave Mechanics, John Wiley & Sons
  29. Mori, N., and Cox, D.T. (2003). "Statistical Modeling of Overtopping for Extreme Waves Fixed Deck." J. Wtrwy. Port Coast. and Ocn. Engrg., ASCE, Vol. 129, No. 4, pp. 165-173 https://doi.org/10.1061/(ASCE)0733-950X(2003)129:4(165)
  30. Reeve, D.E. (1998). "Coastal Flood Risk Assessment." J. Wtrwy. Port Coast. and Ocn. Engrg., ASCE, Vol. 124, No. 5, pp. 219-228 https://doi.org/10.1061/(ASCE)0733-950X(1998)124:5(219)
  31. Sorensen, R.M. (1997). Basic Coastal Engineering, 2nd ed., Chapman & Hall
  32. Teng, H.H. (1984). Applied Offshore Structural Engineering, Practical Design Methods, Formulas, and Data, Gulf Publishing Company, pp. 37-45