DOI QR코드

DOI QR Code

잠제 설치 연안의 처오름 높이 특성 : PART I - 잠제의 평면배치에 의한 영향

Characteristics of Run-up Height over Sandy Beach with Submerged Breakwaters : PART I - Effect of Plane Arrangement of Submerged Breakwaters

  • 허동수 (국립경상대학교 토목환경공학부(해양산업연구소)) ;
  • 이우동 (국립경상대학교 대학원 해양토목공학과)
  • 투고 : 2008.02.25
  • 심사 : 2008.05.02
  • 발행 : 2008.05.31

초록

본 연구에서는 잠제의 평면배치형상(이안거리, 개구율)에 따라 해빈상을 전파하는 풍파의 처오름 높이 변화특성을 논의하기 위하여, 파 투과성구조물 해빈의 상호간섭을 직접해석할 수 있는 3D-수치모델(LES-WASS-3D; 허와 이, 2007)을 이용하였다. 먼저, 기존의 수리모형 실험치와 본 연구의 계산치를 비교 검토하여 이용한 수치모델의 타당성 및 유효성을 검증한 후, 잠제 2기의 평면배치의 변화에 따른 수치시뮬레이션을 실시하였다. 결과로서 얻어진 잠제 주변의 파고분포 및 상층흐름 특성 등과 관련하여 연안에서의 처오름 높이를 검토한 결과, 처오름 높이 감소에 효율적인 잠제의 이안거리는 $Y/L_i=1.50{\sim}1.75$, 개구율은 $W/L_r=0.50$인 것을 확인하였다.

In this present study, we made a first attempt to investigate physical transformations of incident waves in surf and swash zone and hydrodynamic phenomena of detached and submerged breakwaters. For an accurate simulation of the complicated wave deformation, Three-Dimensional numerical model with Large Eddy Simulation has been developed recently and expanded properly for the current applications, which is able to simulate an accurate and direct WAve Structure Sandy seabed interaction (hereafter, LES-WASS-3D). LES-WASS-3D has been validated through the comparison with experimental results for limited cases, and has been used for the simulation of wave run-up on sandy beach, mean fluid flows over and around submerged structures and swash zone (alongshore/rip current), and spatial distribution of wave height in wide fluid regions. In addition, a strategy of efficient deployment ($Y/L_i=1.50{\sim}1.75$, $W/L_r=0.50$) of the submerged breakwaters has been discussed.

키워드

참고문헌

  1. 김인철, 정종수(2000) 투수성 사면에서 파의 처오름 및 반사에 관한 수치해석. 대한토목학회논문집, 대한토목학회, 제20권, 제5B호, pp. 775-763
  2. 허동수, 염경선, 배기성(2006) 혼성방파제에 작용하는 3차원 파압 구조에 미치는 위상차의 영향. 대한토목학회논문집, 대한토목 학회, 제26권, 제5B호, pp. 563-572
  3. 김용현, 윤종성, 김도삼, 김규한(2007) 부산 송도연안의 표사이동 및 해양환경 모니터링. 대한토목학회 정기학술대회발표논문집 대한토목학회, pp. 618-621
  4. 허동수, 이우동(2007) 잠제 주변의 파고분포 및 흐름의 3차원 특성; PART I-해빈이 없을 경우. 대한토목학회논문집, 대한토 목학회, 제27권, 제6B호, pp. 689-701
  5. 허동수, 이우동(2008) 잠제 주변의 파고분포 및 흐름의 3차원 특성; PARTII-해빈이 있을 경우. 대한토목학회논문집, 대한토 목학회, 제28권, 제1B호, pp. 115-123
  6. Baldock, T.E., Holmes, P., and Horn, D.P. (1997) Low frequency swash motion induced by wave grouping. Coastal Eng., Vol. 32, pp. 197-222 https://doi.org/10.1016/S0378-3839(97)81750-4
  7. Ergun, S. (1952) Fluid flow through packed columns. Chem Eng., Vol. 48, No. 2, pp. 89-94 https://doi.org/10.1016/0009-2509(93)80285-X
  8. Hughes, M.G. (1992) Application of a non-linear shallow water theory to swash following bore collapse on a sandy beach. Journal of Coastal Research, Vol. 8, No. 3, pp. 562-578
  9. Hur, D.S. and Mizutani, N. (2003) Numerical estimation of the wave forces acting on a three-dimensional body on submerged breakwater. Coastal Eng., Vol. 47, pp. 329-345 https://doi.org/10.1016/S0378-3839(02)00128-X
  10. Hur, D.S. (2004) Deformation of multi-directional random waves passing over an impermeable submerged breakwater installed on a sloping bed. Ocean Eng., Vol. 31, pp. 1295-1311 https://doi.org/10.1016/j.oceaneng.2003.12.005
  11. Kriebel, D.L. (1994) Swash zone wave characteristics from SUPERTANK. Proceedings of the 24th Coastal Engineering Conference, ASCE, pp. 2207-2221
  12. Kubota, S., Katori, S., and Takezawa, M. (1999) Relationship between on-offshore sediment transport rate on the beach face and wave energy. Proceedings of Coastal Sediments '99, ASCE, pp. 447-462
  13. Larson, M., Kubota, S., and Erikson, L. (2004) Swash-zone sediment transport and foreshore evolution: field experiments and mathematical modeling. Marine Geology, Vol. 212, pp. 61-79 https://doi.org/10.1016/j.margeo.2004.08.004
  14. Liu, S. and Masliyah, J.H. (1999) Non-linear flows in porous media. J. Non-Newtonian Fluid Mech., Vol. 86, No. 1, pp. 229-252 https://doi.org/10.1016/S0377-0257(98)00210-9
  15. Lynett, P.J., Wu, T.S., and Liu, P.L.-F. (2002) Modeling wave runup with depth-integrated equations. Coastal Eng., Vol. 46, pp. 89-107 https://doi.org/10.1016/S0378-3839(02)00043-1
  16. Ma, H.H., Mizutani, N., Eguchi, S., and Hur, D.S. (2004) Study on beach profile change and wave induced velocity field in permeable beach. Journal of Civil Engineering in the Ocean, JSCE, Vol. 20, pp. 509-514 (in Japanese) https://doi.org/10.2208/prooe.20.509
  17. Mase, H. (1988) Spectral characteristics of random wave run-up. Coastal Eng., Vol. 12, pp. 175-189 https://doi.org/10.1016/0378-3839(88)90004-X
  18. Mase, H., Miyahira, A., and Hedges, T.S. (2004) Random wave runup on seawalls near shorelines with and without artificial reefs. Spectral characteristics of random wave run-up. Journal of Coastal Eng., JSCE, Vol. 46, No. 3, pp. 247-268 https://doi.org/10.1142/S0578563404001063
  19. Masselink, G. and Puleo, J.A. (2006) Swash-zone morphodynamics. Continental Shelf Research, Vol. 26, pp. 661-680 https://doi.org/10.1016/j.csr.2006.01.015
  20. Puleo, J.A., Beach, R.A., Holman, R.A., and Allen, J.S. (2000) Swash zone sediment suspension and transport and the importance of bore-generated turbulence. Journal of Geophysical Research, Vol. 105, pp. 17021-17044 https://doi.org/10.1029/2000JC900024
  21. Ruggiero, P., Komar, P.D., Mcdougal, W.G., Marra, J.J., and Beach, R.A. (2001) Wave runup, extreme water levels and the erosion of properties backing beaches. Journal of Coastal Research, Vol. 17, No. 2, pp. 407-419
  22. Sallenger, A.H. (2000) Storm impact scale for barrier islands. Journal of Coastal Research, Vol. 16, No. 3, pp. 890-895
  23. Sakakiyama, T. and Kajima, R. (1992) Numerical simulation of nonlinear wave interacting with permeable breakwater. Proc. 23rd Int. Conf. Coastal Eng., ASCE, pp. 1517-1530
  24. Smagorinsky, J. (1963) General circulation experiments with the primitive equation. Mon. Weath. Rev. Vol. 91, No. 3, pp. 99-164 https://doi.org/10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2
  25. Stockdon, H.S., Holman, R.A., Howd, P.A., and Sallenger Jr, A.H. (2006) Empirical parameterization of setup, swash, and runup. Coastal Eng., Vol. 53, pp. 573-588 https://doi.org/10.1016/j.coastaleng.2005.12.005
  26. van Gent, M.R.A. (1995) Wave interaction with permeable coastal structures. Ph.D. Thesis, Delft University The Netherlands