DOI QR코드

DOI QR Code

Effect of Annealing Temperature with Silver Nanoparticles Incorporation on the Electronic Structure of Poly (3, 4-ethylenedioxythiphene) : poly (styrenesulfonate) Film

은 나노입자가 함침된 Poly (3, 4-ethylenedioxythiphene) : poly (styrenesulfonate)필름의 전자 구조상태에 미치는 열처리효과 연구

  • Wang, Seok-Joo (Department of Ceramic Engineering, Yonsei University) ;
  • Lee, Cho-Young (Department of Ceramic Engineering, Yonsei University) ;
  • Park, Hyung-Ho (Department of Ceramic Engineering, Yonsei University)
  • 왕석주 (연세대학교 신소재공학과) ;
  • 이초영 (연세대학교 신소재공학과) ;
  • 박형호 (연세대학교 신소재공학과)
  • Published : 2008.09.27

Abstract

The effect of silver nanoparticles (NPs) incorporation on the electronic properties of poly (3, 4-ethylenedioxythiphene) : poly(styrenesulfonate) (PEDOT : PSS) films was investigated. The surface of silver NPs was stabilized with trisodium citrate to control the size of silver NPs and prevent their aggregation. We obtained ca. 5 nm sized silver NPs and dispersed NPs in PEDOT : PSS solution. Sheet resistance, surface morphology, bonding state, and work function values of the PEDOT : PSS films were modified by silver NPs incorporation as well as annealing temperature. Sodium in silver NPs solution could lead to a decrease of work function of PEDOT : PSS; however, large content of silver NPs have an effect on the increase in work function, resulting from charge localization on the silver NPs and a decrease in the number of charge-trapping-related defects by chemical bond formation.

Keywords

References

  1. R. H. Friend, R. W. Gymer, A. B. Holmes, J. H. Burroughes, R. N. Marks, C. Taliani, D. D. C. Bradley, D. A. Dos Santos, J. L. Bre das, M. Lo gdlund, and W. R. Salaneck, Nature, 397, 121 (1999) https://doi.org/10.1038/16393
  2. C. Dimitrakopoulos and P. R. L. Malenfant, Adv. Mater., 14, 99 (2002) https://doi.org/10.1002/1521-4095(20020116)14:2<99::AID-ADMA99>3.0.CO;2-9
  3. J. S. Kim, R. H. Friend and F. Cacialli, Appl. Phys. Lett., 74, 3084 (1999) https://doi.org/10.1063/1.124069
  4. Y. J. Lin, W. Y. Chou and S. T. Lin, Appl. Phys. Lett., 88, 071108 (2006) https://doi.org/10.1063/1.2176856
  5. J. Lu, N. J. Pinto and A. G. MacDiarmid, J. Appl. Phys., 92, 6033 (2002) https://doi.org/10.1063/1.1511291
  6. N. Koch, J. Ghijsen, J. J. pireaux, J. Schwartz, R. L. Johnson, A. Elschaner and A. Kahn, Appl. Phys. Lett., 82, 70 (2003) https://doi.org/10.1063/1.1532102
  7. N. Koch and A. Vollmer, Appl. Phys. Lett., 89, 162107 (2006) https://doi.org/10.1063/1.2364166
  8. J. J. Mock, D. R. Smith and S. Schultz, Nano. Lett., 3, 485 (2003) https://doi.org/10.1021/nl0340475
  9. C. J. Murphy and N. R. Jana, Adv. Mater., 14, 80 (2002) https://doi.org/10.1002/1521-4095(20020104)14:1<80::AID-ADMA80>3.0.CO;2-#
  10. T. L. Stott and M. O. Wolf, Coordin. Chem. Rev., 246, 89 (2003) https://doi.org/10.1016/S0010-8545(03)00114-0
  11. G. R. Gattorno, D. Diaz, L. Rendon and G. O. Hernandez-Segura, J. Phys. Chem. B., 106, 2482 (2002) https://doi.org/10.1021/jp012670c
  12. W. Schnabel, Polymer degradation: Principles and Practical Applications, p. 25-63, Macmillan Publishing Co. Inc., New York (1981)
  13. G. Greczynski, T. Kugler, and W. R. Salaneck, Thin Solid Films, 354, 129 (1999) https://doi.org/10.1016/S0040-6090(99)00422-8
  14. W. H. Kim, G. P. Kushto, H. Kim, and Z. H. Kafafi, J. of Polym. Sci. Part B: Polym. Phys., 41, 2522 (2003) https://doi.org/10.1002/polb.10646
  15. C. H. L. Weijtens, V. Van Elsbergen, M. M. de Kok, S. H. P. M de Winter, Org. Electron., 6, 97 (2005) https://doi.org/10.1016/j.orgel.2005.02.005

Cited by

  1. Polymer-nanoparticle composites composed of PEDOT:PSS and nanoparticles of Ag synthesised by laser ablation vol.290, pp.3, 2012, https://doi.org/10.1007/s00396-011-2533-6