Browse > Article
http://dx.doi.org/10.3740/MRSK.2008.18.9.503

Effect of Annealing Temperature with Silver Nanoparticles Incorporation on the Electronic Structure of Poly (3, 4-ethylenedioxythiphene) : poly (styrenesulfonate) Film  

Wang, Seok-Joo (Department of Ceramic Engineering, Yonsei University)
Lee, Cho-Young (Department of Ceramic Engineering, Yonsei University)
Park, Hyung-Ho (Department of Ceramic Engineering, Yonsei University)
Publication Information
Korean Journal of Materials Research / v.18, no.9, 2008 , pp. 503-506 More about this Journal
Abstract
The effect of silver nanoparticles (NPs) incorporation on the electronic properties of poly (3, 4-ethylenedioxythiphene) : poly(styrenesulfonate) (PEDOT : PSS) films was investigated. The surface of silver NPs was stabilized with trisodium citrate to control the size of silver NPs and prevent their aggregation. We obtained ca. 5 nm sized silver NPs and dispersed NPs in PEDOT : PSS solution. Sheet resistance, surface morphology, bonding state, and work function values of the PEDOT : PSS films were modified by silver NPs incorporation as well as annealing temperature. Sodium in silver NPs solution could lead to a decrease of work function of PEDOT : PSS; however, large content of silver NPs have an effect on the increase in work function, resulting from charge localization on the silver NPs and a decrease in the number of charge-trapping-related defects by chemical bond formation.
Keywords
PEDOT : PSS; silver; nanoparticle; work function; charge localization;
Citations & Related Records

Times Cited By SCOPUS : 1
연도 인용수 순위
1 Y. J. Lin, W. Y. Chou and S. T. Lin, Appl. Phys. Lett., 88, 071108 (2006)   DOI   ScienceOn
2 C. Dimitrakopoulos and P. R. L. Malenfant, Adv. Mater., 14, 99 (2002)   DOI   ScienceOn
3 N. Koch, J. Ghijsen, J. J. pireaux, J. Schwartz, R. L. Johnson, A. Elschaner and A. Kahn, Appl. Phys. Lett., 82, 70 (2003)   DOI   ScienceOn
4 T. L. Stott and M. O. Wolf, Coordin. Chem. Rev., 246, 89 (2003)   DOI   ScienceOn
5 G. Greczynski, T. Kugler, and W. R. Salaneck, Thin Solid Films, 354, 129 (1999)   DOI   ScienceOn
6 R. H. Friend, R. W. Gymer, A. B. Holmes, J. H. Burroughes, R. N. Marks, C. Taliani, D. D. C. Bradley, D. A. Dos Santos, J. L. Bre das, M. Lo gdlund, and W. R. Salaneck, Nature, 397, 121 (1999)   DOI   ScienceOn
7 J. S. Kim, R. H. Friend and F. Cacialli, Appl. Phys. Lett., 74, 3084 (1999)   DOI
8 C. J. Murphy and N. R. Jana, Adv. Mater., 14, 80 (2002)   DOI   ScienceOn
9 G. R. Gattorno, D. Diaz, L. Rendon and G. O. Hernandez-Segura, J. Phys. Chem. B., 106, 2482 (2002)   DOI   ScienceOn
10 W. Schnabel, Polymer degradation: Principles and Practical Applications, p. 25-63, Macmillan Publishing Co. Inc., New York (1981)
11 W. H. Kim, G. P. Kushto, H. Kim, and Z. H. Kafafi, J. of Polym. Sci. Part B: Polym. Phys., 41, 2522 (2003)   DOI   ScienceOn
12 C. H. L. Weijtens, V. Van Elsbergen, M. M. de Kok, S. H. P. M de Winter, Org. Electron., 6, 97 (2005)   DOI   ScienceOn
13 N. Koch and A. Vollmer, Appl. Phys. Lett., 89, 162107 (2006)   DOI   ScienceOn
14 J. J. Mock, D. R. Smith and S. Schultz, Nano. Lett., 3, 485 (2003)   DOI   ScienceOn
15 J. Lu, N. J. Pinto and A. G. MacDiarmid, J. Appl. Phys., 92, 6033 (2002)   DOI   ScienceOn