Oxalate Decarboxylase from Agrobacterium tumefaciens C58 is Translocated by a Twin Arginine Translocation System

  • Shen, Yu-Hu (School of Life Science, Lanzhou University) ;
  • Liu, Rui-Juan (Northwest Plateau Institute of Biology, the Chinese Academy of Sciences) ;
  • Wang, Hai-Qing (Northwest Plateau Institute of Biology, the Chinese Academy of Sciences)
  • Published : 2008.07.31

Abstract

Oxalate decarboxylases (OXDCs) (E.C. 4.1.1.2) are enzymes catalyzing the conversion of oxalate to formate and $CO_2$. The OXDCs found in fungi and bacteria belong to a functionally diverse protein superfamily known as the cupins. Fungi-originated OXDCs are secretory enzymes. However, most bacterial OXDCs are localized in the cytosol, and may be involved in energy metabolism. In Agrobacterium tumefaciens C58, a locus for a putative oxalate decarboxylase is present. In the study reported here, an enzyme was overexpressed in Escherichia coli and showed oxalate decarboxylase activity. Computational analysis revealed the A. tumefaciens C58 OXDC contains a signal peptide mediating translocation of the enzyme into the periplasm that was supported by expression of signal-peptideless and full-length versions of the enzyme in A. tumefaciens C58. Further site-directed mutagenesis experiment demonstrated that the A. tumefaciens C58 OXDC is most likely translocated by a twin-arginine translocation (TAT) system.

Keywords

References

  1. Anantharam, V., M. J. Allison, and P. C. Maloney. 1989. Oxalate: Formate exchange. The basis for energy coupling in Oxalobacter. J. Biol. Chem. 264: 7244-7250
  2. Antelmann, H., S. Towe, D. Albrecht, and M. Hecker. 2007. The phosphorus source phytate changes the composition of the cell wall proteome in Bacillus subtilis. J. Proteome Res. 6: 897-903 https://doi.org/10.1021/pr060440a
  3. Azam, M., M. Kesarwani, K. Natarajan, and A. Datta. 2001. A secretion signal is present in the Collybia velutipes oxalate decarboxylase gene. Biochem. Biophys. Res. Commun. 289: 807-812 https://doi.org/10.1006/bbrc.2001.6049
  4. Berks, B. C. 1996. A common export pathway for proteins binding complex redox cofactors. Mol. Microbiol. 22: 393-404 https://doi.org/10.1046/j.1365-2958.1996.00114.x
  5. Bernstein, H. 1998. Membrane protein biogenesis: The exception explains the rules. Proc. Natl. Acad. Sci. USA 95: 14587-14589
  6. Bibi, E. 1998. The role of the ribosome-translocon complex in translation and assembly of polytopic membrane proteins. Trend Biochem. Sci. 23: 51-55 https://doi.org/10.1016/S0968-0004(97)01134-1
  7. Costa, T., L. Steil, L. O. Martins, U. Volker, and A. O. Henriques. 2004. Assembly of an oxalate decarboxylase produced under $\sigma^{K}$control into the Bacillus subtilis spore coat. J. Bacteriol. 186: 1462-1474 https://doi.org/10.1128/JB.186.5.1462-1474.2004
  8. Cristobal, S., J. W. de Gier, H. Nielsen, and G. von Heijne. 1999. Competition between Sec- and TAT-dependent protein translocation in Escherichia coli. EMBO J. 18: 2982-2990 https://doi.org/10.1093/emboj/18.11.2982
  9. Daniel, M. B., D. R. Michael, and J. E. Stuart. 1996. Protein Methods, pp. 107-155, 195-230. 2nd Ed. Wiley-Liss, Inc., New York
  10. Dunwell, J. M. 1998. Sequence analysis of the cupin gene family in Synechocystis PCC6803. Microb. Comp. Genomics 3: 141-148 https://doi.org/10.1089/omi.1.1998.3.141
  11. Dunwell, J. M. and P. J. Gane. 1998. Microbial relatives of seed storage proteins: Conservation of motifs in a functionally diverse superfamily of enzymes. J. Mol. Evol. 46: 147-154 https://doi.org/10.1007/PL00006289
  12. Dunwell, J. M., S. Khuri, and P. J. Gane. 2000. Microbial relatives of the seed storage proteins of higher plants: Conservation of structure and diversification of function during evolution of the cupin superfamily. Microbiol. Mol. Biol. Rev. 64: 153-179 https://doi.org/10.1128/MMBR.64.1.153-179.2000
  13. Dutton, M. V. and C. S. Evans. 1996. Oxalate production by fungi: Its role in pathogenicity and ecology in the soil environment. Can. J. Microbiol. 42: 881-895 https://doi.org/10.1139/m96-114
  14. Feilmeier, B. J., G. Iseminger, D. Schroeder, H. Webber, and G. J. Phillips. 2000. Green fluorescent protein functions as a reporter for protein localization in Escherichia coli. J. Bacteriol. 182: 4068-4076 https://doi.org/10.1128/JB.182.14.4068-4076.2000
  15. Goodner, B., G. Hinkle, S. Gattung, N. Miller, M. Blanchard, B. Qurollo, et al. 2001. Genome sequence of the plant pathogen and biotechnology agent Agrobacterium tumefaciens C58. Science 294: 2323-2328 https://doi.org/10.1126/science.1066803
  16. Kathiara, M., D. A. Wood, and C. S. Evans. 2000. Detection and partial characterization of oxalate decarboxylase from Agaricus bisporus. Mycol. Res. 104: 345-350 https://doi.org/10.1017/S095375629900129X
  17. Kesarwani, M., M. Azam, K. Natarajan, A. Mehta, and A. Datta. 2000. Oxalate decarboxylase from Collybia velutipes. Molecular cloning and its overexpression to confer resistance to fungal infection in transgenic tobacco and tomato. J. Biol. Chem. 275: 7230-7238 https://doi.org/10.1074/jbc.275.10.7230
  18. Khuri, S., F. T. Bakker, and J. M. Dunwell. 2001. Phylogeny, function, and evolution of the cupins, a structurally conserved, functionally diverse superfamily of proteins. Mol. Biol. Evol. 18: 593-605 https://doi.org/10.1093/oxfordjournals.molbev.a003840
  19. Kuwana, R., Y. Kasahara, M. Fujibayashi, H. Takamatsu, N. Ogasawara, and K. Watabe. 2002. Proteomics characterization of novel spore proteins of Bacillus subtilis. Microbiology 148: 3971-3982 https://doi.org/10.1099/00221287-148-12-3971
  20. Lane, B. G., J. M. Dunwell, J. A. Ray, M. R. Schmitt, and A. C. Cuming. 1993. Germin, a protein marker of early plant development, is an oxalate oxidase. J. Biol. Chem. 268: 12239-12242
  21. Magro, P., P. Marciano, and P. D. Lenna. 1988. Enzymatic oxalate decarboxylation in isolates of Sclerotinia sclerotiorum. FEMS Microbiol. Lett. 49: 49-52 https://doi.org/10.1111/j.1574-6968.1988.tb02680.x
  22. Maloney, P. C. 1994. Bacterial transporters. Curr. Opin. Cell Biol. 6: 571-582 https://doi.org/10.1016/0955-0674(94)90079-5
  23. Mehta, A. and A. Datta. 1991. Oxalate decarboxylase from Collybia velutipes. Purification, characterization, and cDNA cloning. J. Biol. Chem. 266: 23548-23553
  24. Micales, J. A. 1997. Localization and induction of oxalate decarboxylation in the brown-rot wood decay fungus Postia placenta. Int. Biodeterior. Biodegrad. 39: 125-132 https://doi.org/10.1016/S0964-8305(97)00009-7
  25. Sambrook, J., E. F. Fritsch, and T. Maniatis. 1989. Molecular Cloning: A Laboratory Manual, pp. 1-69, 852-861. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York
  26. Scelonge, C. J. and D. L. Bidney. 1998. Gene encoding oxalate decarboxylase from Aspergillus phoenices. Patent Application WO 98/42827
  27. Schmidt-Eisenlohr, H., N. Domke, and C. Baron. 1999. TraC of IncN plasmid pKM101 associates with membranes and extracellular high-molecular weight structures in Escherichia coli. J. Bacteriol. 181: 5563-5571
  28. Schmidt-Eisenlohr, H., N. Domke, C. Angerer, G. Wanner, P. C. Zambryski, and C. Baron. 1999. Vir proteins stabilize VirB5 and mediate its association with the T pilus of Agrobacterium tumefaciens. J. Bacteriol. 181: 7485-7592
  29. Settles, A. and R. Martienssen. 1998. Old and new pathways of protein export in chloroplasts and bacteria. Trends Cell Biol. 8: 494-501 https://doi.org/10.1016/S0962-8924(98)01387-7
  30. Tanner, A. and S. Bornemann. 2000. Bacillus subtilis YvrK is an acid-induced oxalate decarboxylase. J. Bacteriol. 182: 5271-5273 https://doi.org/10.1128/JB.182.18.5271-5273.2000
  31. Tanner, A., L. Bowater, S. A. Fairhurst, and S. Bornemann. 2001. Oxalate decarboxylase requires manganese and dioxygen for activity. Overexpression and characterization of Bacillus subtilis YvrK and YoaN. J. Biol. Chem. 276: 43627-43634 https://doi.org/10.1074/jbc.M107202200
  32. Thomas, J. D., R. A. Daniel, J. Errington, and C. Robinson. 2001. Export of active green fluorescent protein to the periplasm by the twin-arginine translocase (Tat) pathway in Escherichia coli. Mol. Microbiol. 39: 47-53 https://doi.org/10.1046/j.1365-2958.2001.02253.x