Immunosuppressive Activity of Cultured Broth of Entompathogenic Bacteria on the Beet Armyworm, Spodoptera exigua, and Their Mixture Effects with Bt Biopesticide on Insecticidal Pathogencity

파밤나방(Spodoptera exigua)에 대한 곤충병원세균류 배양액의 곤충면역억제활성 및 비티 생물농약과 혼합효과

  • Kim, Jea-Min (Plant Medicine, School of Bioresource Sciences, Andong National University) ;
  • Nalini, Madanagopal (Plant Medicine, School of Bioresource Sciences, Andong National University) ;
  • Kim, Yong-Gyun (Plant Medicine, School of Bioresource Sciences, Andong National University)
  • 김지민 (안동대학교 자연과학대학 생명자원과학부 식물의학) ;
  • ;
  • 김용균 (안동대학교 자연과학대학 생명자원과학부 식물의학)
  • Published : 2008.06.30

Abstract

Entomopathogenic bacteria (Xenorhabdus nematophila, X. sp. and Photorhabdus temperata subsp. temperata) isolated from entomopathogenic nematodes express potent insecticidal activity in insect hemocoel. They are also known to suppress insect immune mediation by inhibiting phospholipase $A_2$, leading to host immunosuppression. This study analyzed effects of their cultured broths on inhibiting insect immunosuppression. For this, we removed all bacterial cells using $0.2\;{\mu}m$ pore sized membrane from the bacteria-cultured broth. All three sterilized cultured media, in dose-dependent manners, significantly inhibited hemocyte-spreading behavior of 5th instar larvae of Spodoptera exigua. However, they showed differential inhibitory activities among different bacterial species, in which X. nematophila showed the most potent inhibitory activity. This immunosuppressive effect was applied to increase the pathogenicity of Bacillus thuringiensis (Bt). All three bacterial cultured broths including bacterial cells significantly potentiated Bt pathogenicity against young S. exigua larvae when each of them was orally administered in a mixture of low dose of Bt. Finally, we tested the effect of oral administration of the cultured media containing the immunosuppressive compound(s) secreted by the bacteria. The membrane-sterilized cultured broths were mixed with the low dose of Bt and then orally administered to the young S. exigua. Only the cultured medium of X. nematophila showed increase of Bt pathogenicity. These results indicated that the; cultured media of the three bacteria possessed immunosuppressive factor(s), which may act to potentiate Bt toxicity to young S. exigua larvae.

곤충병원선충으로부터 분리된 곤충병원세균들(Xenorhabdus nematophila, X. sp. and Photorhabdus temperata subsp. temperata)은 곤충혈강에서 높은 살충효과를 보유하고 있다. 이들 세균들은 또한 phospholipase $A_2$ 효소 작용을 억제하여 면역중개반응을 무력화하여 곤충기주의 면역억제를 유도하게 한다. 본 연구는 이들 세균이 성장된 배양액이 이러한 면역억제 활성을 보유하는 지를 분석하였다. 이를 위해 $0.2\;{\mu}m$ 공극 크기의 여과막을 이용하여 세균배양액으로부터 세균을 제거시켰다. 이렇게 멸균된 세균배양액은 배양액 농도에 따라 뚜렷하게 파밤나방(Spodoptera exigua) 5령충의 혈구세포 활착행동을 억제시켰다. 또한 이러한 억제효과는 세균별로 차등을 보였으며, 이 가운데 X. nematophila의 배양이 가장 높았다. 이 세균의 면역억제 활성 성질을 Bacillus thuringiensis (Bt)의 감염력 제고에 적용하였다. 세 세균 모두의 배양액(세균 포함)들은 낮은 농도의 Bt와 혼합하여 섭식 처리할 경우 어린 파밤나방 유충에 대해서 뚜렷하게 Bt 감염력을 제고시켰다. 다시 이 세균을 제거한 멸균된 배양액을 낮은 Bt농도 처리와 혼합하여 섭식 처리하였다. 이때 X. nematophila의 배양액만이 Bt의 감염력을 제고시켰다. 본 연구는 이들 세 곤충병원세균의 배양액에 곤충의 면역억제물질이 포함되었음을 보였으며, 이들 물질을 Bt와 혼용하였을 때 Bt의 살충력을 제고시킬 수 있음을 나타냈다.

Keywords

References

  1. Adams, B.J. and K.B. Nguyen (2002) Taxonomy and systematics. pp. 1-33, In Entomopathogenic Nematology (ed. R. Gaugler), CABI Publishing, New York
  2. Akhurst, R.J. (1980) Morphological and functional dimorphism in Xenorhabdus spp., bacteria symbiotically associated with the insect pathogenic nematodes Neoaplectana and Heterorhabditis. J. Gen. Microbiol. 121:303-309
  3. Bae, S. and Y. Kim (2003) Lysozyme of the beet armyworm, Spodoptera exigua: activity induction and cDNA structure. Comp. Biochem. Physiol. 135B:511-519
  4. Boemare, N. (2002) Biology, taxonomy and systematics of Photorhabdus and Xenorhabdus. pp. 35-56, In Entomopathogenic Nematology (ed. R. Gaugler), CABI Publishing, New York
  5. Buyukguzel, E., H. Tunaz, D. Stanley and K. Buyukguzel (2007) Eicosanoids mediate Galleria mellonella cellular immune response to viral infection. J. Insect Physiol 53:99-105 https://doi.org/10.1016/j.jinsphys.2006.10.012
  6. Clark, K.D., Y. Kim and M.R. Strand (2005) Plasmatocyte sensitivity to plasmatocyte spreading peptide (PSP) fluctuates with the larval molting cycle. J. Insect Physiol. 51:587-596 https://doi.org/10.1016/j.jinsphys.2005.03.002
  7. Dennis, E.A. (1994) Diversity of group types, regulation, and function of phospholipase A2. J. Biol. Chem. 269:13057-13060
  8. Dennis, E.A. (1997) The growing phospholipase A2 superfamily of signal transduction enzymes. Trends. Biochem. Sci. 22:1-2 https://doi.org/10.1016/S0968-0004(96)20031-3
  9. Dunphy, G.B. and J.M. Webster (1984) Interaction of Xenorhabdus nematophilus subsp. nematophilus with the haemolymph of Galleria mellonella. J. Insect Physiol. 30:883-889 https://doi.org/10.1016/0022-1910(84)90063-5
  10. Dunphy, G.B. and J.M. Webster (1991) Antihemocytic surface components of Xenorhabdus nematophilus var. dutki and their modification by serum of nonimmune larvae of Galleria mellonella. J. Invertebr. Pathol. 58:40-51 https://doi.org/10.1016/0022-2011(91)90160-R
  11. ffrench-Constant, R.H., N. Waterfield and P. Daborn (2005) Insecticidal toxins from Photorhabdus and Xenorhabdus. pp. 239-253, In Comprehensive Molecular Insect Science (eds. L.I. Gilbert, I. Kostas and S.S. Gill), Elsevier, New York
  12. Forst, S., B. Dowds, N. Boemare and E. Stackebrandt (1997) Xenorhabdus and Photorhabdus spp.: bugs that kill bugs. Annu. Rev. Microbiol. 51:47-72 https://doi.org/10.1146/annurev.micro.51.1.47
  13. Gahan, L.J., F. Gould and D.G. Heckel (2001) Identification of a gene associated with Bt resistance in Heliothis virescens. Science 293:857-860 https://doi.org/10.1126/science.1060949
  14. Garcia, E.S., E.M.M. Machado and P. Azambuja (2004) Effects of eicosanoid biosynthesis inhibitors on the prophenoloxidase- activating system and microaggregation reactions in the hemolymph of Rhodnius prolixus infected with Trypanosoma rangeli. J. Insect Physiol. 50:157-165 https://doi.org/10.1016/j.jinsphys.2003.11.002
  15. Gill, M. and D. Ellar (2002) Transgenic Drosophila reveals a functional in vivo receptor for the Bacillus thuringiensis toxin Cry1Ac1. Insect Mol. Biol. 11:619-625 https://doi.org/10.1046/j.1365-2583.2002.00373.x
  16. Gillespie, J.P., M.R. Kanost and T. Trenczek (1997) Biological mediators of insect immunity. Annu. Rev. Entomol. 42:611-643 https://doi.org/10.1146/annurev.ento.42.1.611
  17. Hoffmann, C., H. Vanderbruggen, H. Hofte, J. Van Rie, S. Jansens and H. Van Mellaert (1988) Specificity of Bacillus thuringiensis-endotoxins is correlated with the presence of high-affinity binding sites in the brush border membrane of target insect midgets. Proc. Natl. Acad. Sci. USA 85:7844-7848
  18. Ji, D., Y. Yi and Y. Kim (2004a) 16S rDNA sequence and biochemical characters of a Korean isolate of Xenorhabdus nematophila. J. Asia-Pacific Entomol. 7:105-111 https://doi.org/10.1016/S1226-8615(08)60205-8
  19. Ji, D. and Y. Kim (2004) An entomopathogenic bacterium, Xenorhabdus nematophila, inhibits the expression of an antibacterial peptide, cecropin, of the beet armyworm, Spodoptera exigua. J. Insect Physiol. 50:489-496 https://doi.org/10.1016/j.jinsphys.2004.03.005
  20. Ji, D., Y. Yi, G.H. Kang, Y.H. Choi, P. Kim, N.I. Baek and Y. Kim (2004b) Identification of an antibacterial compound, benzylideneacetone, from Xenorhabdus nematophila against major plant-pathogenic bacteria. FEMS Microbiol. Lett. 239:241-248 https://doi.org/10.1016/j.femsle.2004.08.041
  21. Jung, S. and Y. Kim (2006) Synergistic effect of Xenorhabdus nematophila K1 and Bacillus thuringiensis subsp. aizawai against Spodoptera exigua (Lepidoptera: Noctuidae). Biol. Control 39:201-209 https://doi.org/10.1016/j.biocontrol.2006.07.002
  22. Kang, S., S. Han and Y. Kim (2004) Identification of an entomopathogenic bacterium, Photorhabdus temperata subsp. temperata, in Korea. J. Asia-Pacific Entomol. 7:331-337 https://doi.org/10.1016/S1226-8615(08)60235-6
  23. Kaya, H.K. and R. Gaugler (1993) Entomopathogenic nematodes. Annu. Rev. Entomol. 38:181-206 https://doi.org/10.1146/annurev.en.38.010193.001145
  24. Kim, Y., D. Ji, S. Cho and Y. Park. 2005. Two groups of entomopathogenic bacteria, Photorhabdus and Xenorhabdus, share an inhibitory action against phospholipase A2 to induce host immunodepression. J. Invertebr. Pathol. 89:258-264 https://doi.org/10.1016/j.jip.2005.05.001
  25. Kwon, B. and Y. Kim (2008) Benzylideneacetone, an immunosuppressant, enhances virulence of Bacillus thuringiensis against beet armyworm (Lepidoptera: Noctuidae). J. Econ. Entomol. (In press)
  26. Kwon, S. and Y. Kim (2007) Immunosuppressive action of pyriproxyfen, a juvenile hormone analog, enhances pathogenicity of Bacillus thuringiensis subsp. kurstaki against diamondback moth, Plutella xylostella (Lepidoptera: Yponomeutidae). Biol. Control 42:72-76 https://doi.org/10.1016/j.biocontrol.2007.03.006
  27. Lord, J.C., S. Anderson and D.W. Stanley (2002) Eicosanoids mediate Manduca sexta cellular response to the fungal pathogen Beauveria bassiana: a role for lipoxygenase pathway. Arch. Insect Biochem. Physiol. 51:46-54 https://doi.org/10.1002/arch.10049
  28. Nalini, M., Y. Lee and Y. Kim (2007) Pyriproxyfen inhibits hemocytic phagocytosis of the beet armyworm. Spodoptera exigua. Kor. J. Pesti. Sci. 11:164-170
  29. Park, Y. and Y. Kim (2000) Eicosanoids rescue Spodoptera exigua infected with Xenorhabdus nematophila, the symbiotic bacteria to the entomopathogenic nematode Steinernema carpocapsae. J. Insect Physiol. 46:1469-1476 https://doi.org/10.1016/S0022-1910(00)00071-8
  30. Park, Y. and Y. Kim (2003) Xenorhabdus nematophilus inhibits p-bromophenacyl bromide (BPB)-sensitive PLA2 of Spodoptera exigua. Arch. Insect Biochem. Physiol. 54:134-142 https://doi.org/10.1002/arch.10108
  31. Rajagopal, R., S. Sivakumar, N. Agrawal, P. Malhotra and R.K. Bhatnagar (2002) Silencing of midgut aminopeptidase N of Spodoptera litura by double-stranded RNA established its role as Bacillus thuringiensis toxin receptor. J. Biol. Chem. 277:46849-46851 https://doi.org/10.1074/jbc.C200523200
  32. Raymond, M. (1985) Presentation d'un programme d'analyse log-probit pour micro-ordinateur. Cah. ORS-TOM. Ser. Ent. Med. et Parasitol. 22:117-121
  33. SAS Institute, Inc. (1989) SAS/STAT user's guide, Release 6.03, Ed. Cary, N.C
  34. Shrestha, S. and Y. Kim (2007a) An entomopathogenic bacterium, Xenorhabdus nematophila, inhibits hemocyte phagocytosis of Spodoptera exigua by inhibiting phospholipase A2. J. Invertebr. Pathol. 96:64-70 https://doi.org/10.1016/j.jip.2007.02.009
  35. Shrestha, S. and Y. Kim (2007b) Factors affecting the activation of hemolymph prophenoloxidase of Spodoptera exigua (Lepidoptera: Noctuidae). J. Asia-Pacific Entomol. 10:131-135 https://doi.org/10.1016/S1226-8615(08)60343-X
  36. Shrestha, S. and Y. Kim. 2008. Eicosanoids mediate prophenoloxidase release from oenocytoids in the beet armyworm Spodoptera exigua. Insect Biochem. Mol. Physiol. 38:99-112 https://doi.org/10.1016/j.ibmb.2007.09.013
  37. Stanley, D. (2000) Eicosanoids in invertebrate signal transduction systems. Priceton University Press, New Jersey
  38. Stanley, D. (2006) Prostaglandins and other eicosanoids in insects: biological significance. Annu. Rev. Entomol. 51:25-44 https://doi.org/10.1146/annurev.ento.51.110104.151021
  39. Van Rie, J., S. Jansens, H. Hofte, D. Degheele and H. Van Mellaert (1989) Specificity of Bacillus thuringiensis-endotoxins. Importance of specific receptors on the brush border membrane of the midgut of target insects. Eur. J. Biochem. 186:239-247 https://doi.org/10.1111/j.1432-1033.1989.tb15201.x
  40. 고현관, 이상계, 이비파, 최귀문, 김정화 (1991) 인공사료에 의한 파밤나방의 대량사육법. 한응곤지 29:180-183
  41. 배수일, 권성진, 김용균 (2007) 유약호르몬 동력제 pyriproxyfen의 파밤나방(Spodoptera exigua) 혈구세포 활착행동에 대한 억제 효과. 자연자원연구 7:48-53