DOI QR코드

DOI QR Code

Study of the Effects of the Antisite Related Defects in Silicon Dioxide of Metal-Oxide-Semiconductor Structure on the Gate Leakage Current

  • Mao, Ling-Feng (School of Electronics & Information Engineering, Soochow University) ;
  • Wang, Zi-Ou (School of Electronics & Information Engineering, Soochow University) ;
  • Xu, Ming-Zhen (Institute of Microelectronics Peking University) ;
  • Tan, Chang-Hua (Institute of Microelectronics Peking University)
  • Published : 2008.06.30

Abstract

The effects of the antisite related defects on the electronic structure of silica and the gate leakage current have been investigated using first-principles calculations. Energy levels related to the antisite defects in silicon dioxide have been introduced into the bandgap, which are nearly 2.0 eV from the top of the valence band. Combining with the electronic structures calculated from first-principles simulations, tunneling currents through the silica layer with antisite defects have been calculated. The tunneling current calculations show that the hole tunneling currents assisted by the antisite defects will be dominant at low oxide field whereas the electron direct tunneling current will be dominant at high oxide field. With increased thickness of the defect layer, the threshold point where the hole tunneling current assisted by antisite defects in silica is equal to the electron direct tunneling current extends to higher oxide field.

Keywords

References

  1. C. J. Pickard, and F. Mauri, Phys. Rev. Lett. 88, 086403(2002)
  2. W. L. Scopel, A. J. R. da Silva, W. Orellana, and A. Fazzio, Appl. Phys. Lett. 84, 1492-1494(2004) https://doi.org/10.1063/1.1650874
  3. S, Mukhopadhyay, P. V. Sushko, A. M. Stoneham, and A. L. Shluger, Phys. Rev. B 71, 235204(2005)
  4. Y. K. Kim, H. S. Lee, H. W. Yeom, D. Y. Ryoo, S.-B. Huh, and J.-G. Lee, Phys. Rev. B 70, 165320(2004)
  5. G. Buscarino, S. Agnello, and F. M. Gelardi, Phys. Rev. Lett. 94, 125501(2005)
  6. A. Yokozawa, and Y. Miyamoto, Appl. Phys. lett. 73, 1122-1124(1998) https://doi.org/10.1063/1.122103
  7. V. B. Sulimov, P. V. Sushko, A. H. Edwards, A. L. Shluger, and A. M. Stoneham, Phys Rev. B. 66, 024108 (2002)
  8. S. Agnello, R. Boscaino, M. Cannas, F. M. Gelardi, M. Leone, and B. Boizot, Phys Rev. B. 67, 033202 (2003)
  9. D. J. Chadi, Appl. Phys. lett. 83, 437-439(2003) https://doi.org/10.1063/1.1592003
  10. A. S. Mysovsky, P. V. Sushko, S. Mukhopadhyay, A. H. Edwards, and A. L. Shluger, Phys Rev. B. 69, 085202 (2004)
  11. L. Skuja, J. Non-Cryst. Solids 236, 16-48(1998)
  12. P. E. Blochl, Phys Rev. B. 62, 6158-6179(2000) https://doi.org/10.1103/PhysRevB.62.6158
  13. M. Fadlallah, G. Ghibaudo, M. Bidaud, O. Simonetti, and F. Guyader, Microelectronic Engineering, 72, 241-246 (2004) https://doi.org/10.1016/j.mee.2003.12.044
  14. C. Petit, A. Meinertzhagen, D. Zander, O. Simonetti, M. Fadlallah, and T. Maurel, Microelectronics Reliability, 45, 479-485 (2005) https://doi.org/10.1016/j.microrel.2004.08.002
  15. D. Bauza, F. Rahmoune, R. Laqli, and G. Ghibaudo, Microelectronics Reliability, 45, 849-852(2005) https://doi.org/10.1016/j.microrel.2004.11.033
  16. A. Meinertzhagen, C. Petit, D. Zander, O. Simonetti, T. Maurel, and M. Jourdain, J. App. Phys., 91, 2123-2132(2002) https://doi.org/10.1063/1.1430536
  17. D. J. DiMaria, and E. Cartier, J. App. Phys., 78, 3883-3894 (1995) https://doi.org/10.1063/1.359905
  18. P.E. Blochl, and J.H. Stathis, Phys. Rev. Lett., 83, 372-375 (1999) https://doi.org/10.1103/PhysRevLett.83.372
  19. M. Städele, B. Fischer, B. R. Tuttle, and K. Hess, Solid State Electronics, 46, 1027-1032 (2002) https://doi.org/10.1016/S0038-1101(02)00037-0
  20. L. F. Mao, Z. O. Wang, J. Y. Wang, and G. Y. Yang, Semicond. Sci. Technol., 20, 1078-1082 (2005) https://doi.org/10.1088/0268-1242/20/10/016
  21. L. F. Mao, and Ziou Wang, Physica Status Solidi(a), 204, 784-790 (2007) https://doi.org/10.1002/pssa.200622325
  22. L. F. Mao, Microelectronics Reliability, 47, 1213-1217(2007) https://doi.org/10.1016/j.microrel.2006.09.027
  23. L. F. Mao, International Journal of Electronics, 94, 985-99 (2007)
  24. L.F. Mao, Z.O. Wang, J.Y. Wang, and C.Y. Zhu, Eur. Phys. J. Appl. Phys. 40, 59-63 (2007) https://doi.org/10.1051/epjap:2007129
  25. M. D. Segall, Philop J. D. Lindan, M. J. Probert, C. .J Pickard, P. J. Hasnip, S. J. Clark, and M. C. Payne, J. Phys.: Condens. Matter., 14, 2717-2744 (2002) https://doi.org/10.1088/0953-8984/14/11/301
  26. J. F. Verwey, E. A. Amerasekera, and J. Bisschop, Rep. Prog. Phys. 53, 1297-1331(1990) https://doi.org/10.1088/0034-4885/53/10/002
  27. Y. Ando, and T. Itoh, J. Appl. Phys. 61, 1497-1502 (1987) https://doi.org/10.1063/1.338082
  28. M. I. Vexler, S. E. Tyaginov, and A. F. Shulekin, J. Phys.: Condens. Matter 17, 8057-8068 (2005) https://doi.org/10.1088/0953-8984/17/50/023